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Abstract —This paper reviews the current state of the art in circuit
optimization, emphasizing techniques suitable for modern microwave CAD.
It is directed at the solution of realistic design and modeling problems,
addressing such concepts as physical tolerances and model uncertainties. A
unified hierarchical treatment of circuit models forms the basis of the
presentation. It exposes tolerance phenomena at different parameter/
response levels. The concepts of design centering, tolerance assignment,
and postproduction tuning in relation to yield enhancement and cost
reduction suitable for integrated circuits are discussed. Suitable techniques
for optimization oriented worst-case and statistical design are reviewed. A
generalized [, centering algorithm is proposed and discussed. Multicircuit
optimization directed at both CAD and robust device modeling is formal-
ized. Tuning is addressed in some detail, both at the design stage and for
production alignment. State-of-the-art gradient-based nonlinear optimiza-
tion methods are reviewed, with emphasis given to recent, but well-tested,
advances in minimax, /,, and /, optimization. Illustrative examples as well
as a comprehensive bibliography are provided.

1. INTRODUCTION

OMPUTER-AIDED circuit optimization is certainly
Cone of the most active areas of interest. Its advances
continue; hence the subject deserves regular review from
time to time. The classic paper by Temes and Calahan in
1967 [102] was one of the earliest to formally advocate the
use of iterative optimization in circuit design. Techniques
that were popular at the time, such as one-dimensional
(single-parameter) search, the Fletcher—Powell procedure
and the Remez method for Chebyshev approximation,
were described in detail and well illustrated by circuit
examples. Pioneering papers by Lasdon, Suchman, and
Waren [73], [74], [108] demonstrated optimal design of
linear arrays and filters using the penalty function ap-
proach. Two papers in 1969 by Director and Rohrer [48],
[49] originated the adjoint network approach to sensitivity
calculations, greatly facilitating the use of powerful gradi-
ent-based optimization methods. In the same period, the
work by Bandler {4], [5] systematically treated the formula-
tion of error functions, the least pth objective, nonlinear
constraints, optimization methods, and circuit sensitivity
analysis.
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Since then, advances have been made in several major
directions. The development of large-scale network simula-
tion and optimization techniques have been motivated by
the requirements of the VLSI era. Approaches to realistic
circuit design where design parameter tolerances and yield
are taken into account have been pioneered by Flias [52]
and Karafin [68] and furthered by many authors over the
ensuing years. Optimization methods have evolved from
simple, low-dimension-oriented algorithms into sophisti-
cated and powerful ones. Highly effective and efficient
solutions have been found for a large number of spe-
cialized applications. The surveys by Calahan [37],
Charalambous [39], Bandler and Rizk [26], Hachtel and
Sangiovanni-Vincentelli [63], and Brayton et al. [32] are
especially relevant to circuit designers.

In the present paper, we concentrate on aspects that are
relevant to and necessary for the continuing move to
optimization of increasingly more complex microwave cir-
cuits, in particular to MMIC circuit modeling and design.
Consequently, we emphasize optimization-oriented ap-
proaches to deal more explicitly with process imprecision,
manufacturing tolerances, model uncertainties, measure-
ment errors, and so on. Such realistic considerations arise
from design problems in which a large volume of produc-
tion is envisaged, e.g., integrated circuits. They also arise
from modeling problems in which consistent and reliable
resulis are expected despite measurement errors, structural
limitations such as physically inaccessible nodes, and model
approximations and simplifications. The effort to for-
mulate and solve these problems represents one of ‘the
driving forces of theoretical study in the mathematics of
circuit CAD. Another important impetus is provided by
progress in computer hardware, resulting in drastic reduc-
tion in the cost of mass computation. Finally, the continu-
ing development of gradient-based optimization tech-
niques has provided us with powerful tools.

In this coritext, we review the following concepts: realis-
tic representations of a circuit design and modeling prob-
lem, nominal (single) circuit optimization, statistical circuit
design, and multicircuit modeling, as well as recent gradi-
ent-based optimization methods.

Nominal design and modeling are the conventional ap-
proaches used by microwave engineers. Here, we seek a
single point in the space of variables selected for optimiza-
tion which best meets a given set of performance specifica-
tions (in design) or best matches a given set of response
measurements (in modeling). A suitable scalar measure
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of the deviation between responses and specifications
which forms the objective function to be minimized
is the ubiquitous least squares measure (see, for example,
Morrison [83]), the more esoteric generalized /, objective
(Charalambous [41]) or the minimax objective (Madsen
et al. [80]). We observe here that the performance-driven
(single-circuit) least squares approach that circuit design
engineers have traditionally chosen has proved unsuccess-
ful both in addressing design yield and in serious device
modeling.

Recognition that an actual realization of a nominal
design is subject to fluctuation or deviation led, in the
past, to the so-called sensitivity minimization approach
(see, for example, Schoeffler [94] and Laker et al. [71]).
Employed by filter designers, the approach involves mea-
sures of performance sensitivity, typically first-order, that
are included in the objective function.

In reality, uncertainties which deteriorate performance
may be due to physical (manufacturing, operating) toler-
ances as well as to parasitic effects such as electromagnetic
coupling between elements, dissipation, and dispersion
(Bandler [6], Tromp [107]). In the design of substantially
untunable circuits these phenomena lead to two important
classes of problems: worst-case design and statistical de-
sign. The main objective is the reduction of cost or the
maximization of production yield.

Worst-case design (Bandler et al. [23], [24]), in general,
requires that all units meet the design specifications under
all circumstances (i.e., a 100 percent yield), with or without
tuning, depending on what is practical. In statistical design
[11, [26}, [30], [47], [97], [98], [100], [101] it i$ recognized
that a yield of less than 100 percent is likely; therefore,
with respect to an assumed probability distribution func-
tion, yield is estimated and enhanced by optimization.
Typically, we either attempt to center the design with fixed
assumed tolerances or we attempt to optimally assign
tolerances and/or design tunable elements to reduce pro-
duction cost.

What distinguishes all these problems from nominal
designs or sensitivity minimization is the fact that a single
design point is no longer of interest: a (tolerance) region of
multiple possible outcomes is to be optimally located with
respect to the acceptable (feasible, constraint) region.

Modeling, often unjustifiably treated as if it were a
special case of design, is particularly affected by uncertain-
ties and errors at many levels. Unavoidable measurement
errors, limited accessibility to measurement points, ap-
proximate equivalent circuits, etc., result in nonunique and
frequently inconsistent solutions. To overcome these frus-
trations, we advocate a properly constituted multicircuit
approach (Bandler et al. [12]).

Our presentation is outlined as follows.

In Section II, in relation to a physical engineering sys-
tem of interest, a typical hierarchy of simulation models
and corresponding response and performance functions
are introduced. Error functions arising from given specifi-
cations and a vector of optimization variables are defined.
Performance measures such as [, objective functions (/,
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norms and generalized /, functions) are introduced and
their properties discussed.

We devote to Section III a brief review of the relatively
well-known and successful approach of nominal circuit
design optimization.

In Section IV, uncertainties that exist in the physical
system and at different levels of the model hierarchy are
discussed and illustrated by a practical example. Different
cases of multicircuit design, namely centering, tolerancing
(optimal tolerance assignment), and tuning at the design
stage, are identified. A multicircuit modeling approach and
several possible applications are described.

Some important and representative techniques in worst-
case and statistical design are reviewed in Section V. These
include the nonlinear programming approach to worst-case
design (Bandler et al. [24], Polak [89]), simplicial (Director
and Hachtel [47]) and multidimensional (Bandler and
Abdel-Malek [7]) approximations of the acceptable region,
the gravity method (Soin and Spence [98]), and the para-
metric sampling method (Singhal and Pinel [97]). A gener-
alized I, centering algorithm is proposed as a natural
extension to [, nominal design. It provides a unified
formulation of yield enhancement for both the worst case
and the case where yield is less than 100 percent.

Illustrations of statistical design are given in Section VI.

The studies in the last two decades on the theoretical
and algorithmic aspects of optimization techniques have
produced a great number of results. In particular,
gradient-based optimization methods have gained increas-
ing popularity in recent years for their effectiveness and
efficiency. The essence of gradient-based /, optimization
methods is reviewed in Séction VII. Emphasis is given to
the trust region Gauss—Newtori and the quasi-Newton
algorithms (Madsen [78], Moré [82], Dennis and Moré
[46)).

The subject of gradient calculation and approximation is
briefly discussed in Section VIIL

II. VARIABLES AND FUNCTIONS

In this section, we review some basic concepts of practi-
cal circuit optimization. In particular, we identify a physi-
cal system and its simulation models. We discuss a typical
hierarchy of models and the associated designable parame-
ters and response functions. We also define specifications,
error functions, optimization variables and objective func-
tions.

A. The Physical System

The physical engineering system under consideration
can be a network, a device; a process, and so on, which has
both a fixed structure and given element types. We
manipulate the system through some adjustable parame-
ters contained in the column vector ™. The superscript M
identifies concepts related to the physical system. Geomet-
rical dimensions such as the width of a strip and the length
of a waveguide section are examples of adjustable parame-
ters.



426 . IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, FEBRUARY 1988

In the production of integrated circuits, ¢ may include
some fundamental variables which control, say, a doping
or photomasking process and, consequently, determine the
geometrical and electrical parameters of a chip. External
controls, such as the biasing voltages applied to an active
device, are also possible candidates for ¢™.

The performance and characteristics of the system are
described in terms of some measurable quantities. The
usual frequency and transient responses are typical exam-
ples. These measured responses, or simply measurements,
are denoted by FM(M).

B. The Simulation Models

In circuit optimization, some suitable models are used to
simulate the physicdl system. Actually, models can be
usefully defined at many levels. Tromp [106], [107] has
considered an arbitrary number of levels (also see Bandler
et al. [19]). Here, for simplicity, we consider a hierarchy of
models consisting of four typical levels as

FH= FH(FL)
Fr=F"(¢")
¢" = "(¢"). (1)

oT is a set of low-level model parameters. It is supposed
to represent, as closely as possible, the adjustable parame-
ters in the actual system, i.e., ™. ¢ defines a higher-level
model, typically an equivalent circuit, with respect to a
fixed topology. Usually, we use an equivalent circuit for
the convenience of its analysis. The relationship between
F and ¢ is either derived from theory or given by a set
of empirical formulas.

Next on the hierarchy we define the model responses at
two possible levels. The low-level external representation,
denoted by FZ, can be the frequency-dependent complex
scattering parameters, unterminated y-parameters, transfer
function coefficients, etc. Although these quantities may or
may not be directly measurable, they are very often used
to represent a subsystem. The high-level responses F¥
directly correspond to the actual measured responses,
namely FM, which may be, for example, frequency re-
sponses such as return loss, insertion loss, and group delay
of a suitably terminated circuit.

A realistic example of a one-section transformer on strip-
line was originally considered by Bandler et al. [25]. The
circuits and parameters, 'p‘hysical as well as model, are
shown in Fig. 1. The physical parameters ¢* (and the
low-level model ¢%) include strip widths, section lengths,
dielectric constants, and strip and substrate thicknesses.
The equivalent circuit has six parameters, considered as
¢, including the effective line widths, junction parasitic
inductances, and effective section length. The scattering
matrix of the circuit with respect to idealized (matched)
terminations is a candidate for a low-level external repre-
sentation (FL). The reflection coefficient by taking into
account the actual complex terminations could be a high-
level response of interest (F7).

A B
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Fig. 1. A microwave stripline transformer showing (a) the physical
structure and (b) the equivalent circuit model [25]. The physical param-
eters are

M= [wl Wy Wail\/a\/’;\/abl bybytyity tss]T

where w is the strip width, / the length of the middle section, &, the
dielectric constant, b the substrate thickness, and ¢, the strip thickness.
&M is represented in the simulation model by ¢%. The high-level
parameters of the equivalent circuit are

¢H= [DIDZ D; L, LZIt]T

where D is the effective linewidth, L the junction parasitic inductance,
and /, the effective section length. Suitable empirical formulas that
relate ¢ to ¢ can be found in [25].

For a particular case, we may choose a certain section of
this hierarchy to form a design problem. We can choose
either o™ or ¢ as the designable parameters. Either F* or
F¥ or a suitable combination of both may be selected as
the response functions. Bearing this in mind, we simplify
the notation by using ¢ for the designable parameters and
F for the response functions.

C. Specifications and Error Functions

The following discussion on specifications and error
functions is based on presentations by Bandler [5], and
Bandler and Rizk [26], where more exhaustive illustrations
can be found.

We express the desirable performance of the system by a
set of specifications which are usually functions of certain
independent variable(s) such as frequency, time, and tem-
perature. In practice, we have to consider a discrete set of
samples of the independent variable(s) such that satisfying
the specifications at these points implies satisfying them
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Fig. 2. Illustrations of (a) upper specifications, lower specifications, and
the responses of circuits ¢ and b, (b) error functions corresponding to
circuits @ and b, (c) the acceptable region, and (d) generalized /,
objective functions defined in (13).

almost everywhere. Also, we may consider simultaneously
more than one kind of response. Thus, without loss of
generality, we denote a set of sampled specifications and
the corresponding set of calculated response functions by,
respectively,

Sj’ j=]_,2’...’m
F}(q’)a J=1’2’7m (2)

Error functions arise from the difference between the
given specifications and the calculated responses. In order
to formulate the error functions properly, we may wish to
distinguish between having upper and lower specifications
(windows) and having single specifications, as iliustrated in
Figs. 2(a) and 3(a). Sometimes the one-sidedness of upper
and lower specifications is quite obvious, as in the case of
designing a bandpass filter. On other occasions the distinc-
tion is more subtle, since a single specification may as well
be interpreted as a window having zero width.

In the case of having single specifications, we define the
error functions by

e, () =w|F($)- S|,

where w, is a nonnegative weighting factor.
We may also have an upper specification §,; and a
lower specification S;. In this case we define the error

J=1,2,m

()
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Fig. 3. Illustrations of (a) a discretized single specification and two
discrete single specifications (e.g., expected parameter values to be
matched), as well as the responses of circuits a and b, (b) error
functions related to circuits a and b, (c) the (empty) acceptable region
(e, a perfect match is not possible) and (d) the corresponding /,
norms.

functions as
euj(‘b) =wuj(F}(¢)_—Suj)’
elj(¢’) =W1j(F}(¢)—S1j)a (4)

where w,; and w,, are nonnegative weighting factors. The
index sets as defined by

Ju= {j1> j2"' "jk}
Ji= {jk+1,jk+2»' : ',jm} (5)

are not necessarily disjoint (i.e., we may have simultaneous
specifications). In order to have a set of uniformly indexed
error functions, we let

et=euj(¢)> j'?‘ji,
e, = —elj(¢)7 j=ji:

The responses corresponding to the single specifications
can be real or complex, whereas upper and lower specifica-
tions are applicable to real responses only. Notice that, in
either case, the error functions are real. Clearly, a positive
(nonpositive) error function indicates a violation (satisfac-
tion) of the corresponding specification. Figs. 2(b) and
3(b) depict the concept of error functions.

JEJ,
JEJ

i=1,2,--+,k
i=k+1,k+2,--,m. (6)

D. Optimization Variables and Objective Functions

Mathematically, we abstract a circuit optimization prob-
lem by the following statement:

(™)

where x is a set of optimization variables and U(x) a
scalar objective function.

Optimization variables and model parameters are two
separate concepts. As will be elaborated on later in this
paper, x may contain a subset of ¢ which may have been
normalized or transformed, it may include some statistical
variables of interest, several parameters in ¢ may be tied
to one variable in x, and so on.

minimize U( x)



428

Typically, the objective function U(x) is closely related
to an /, norm or a generalized /, function of e(¢). We
shall review the definitions of such /, functions and dis-
cuss their appropriate use in different contexts.

E. Thel, Norms
The /, norm (Temes and Zai [103]) of e is defined as

m 1/p
llell, = [ Z::llejlp} i (8)

It provides a scalar measure of the deviations of the
model responses from the specifications. Least-squares (/,)
is perhaps the most well-known and widely used norm
(Morrison [83]), which is

m 1/2
llell, = [ Z lej|2:| .
j=1

The 7, objective function is differentiable and its gradi-
ent can be easily obtained from the partial derivatives of e.
Partly due to this property, a large variety of /, opti-
mization techniques have been developed and popularly
implemented. For example, the earlier versions of the
commercial CAD packages TOUCHSTONE [104] and
SUPER-COMPACT [99] have provided designers solely
the least-squares objective.

The parameter p has an important implication. By
choosing a large (small) value for p, we in effect place
more emphasis on those error functions (e,’s) that have
larger (smaller) values. By letting p=oc0 we have the
minimax norm

(9)

(10)

which directs all the attention to the worst case and the
other errors are in effect ignored. Minimax optimization is
extensively employed in circuit design where we wish to
satisfy the specifications in an optimal equal-ripple manner
[3), [13], [14], [21], [40], [42], [65], [67], [80], [85].

On the other hand, the use of the /;, norm, as defined by

lell =X le,| (11)
j=1

llello = mjfaxlejl

implies attaching more importance to the error functions
that are closer to zero. This property has led to the
application of /; to data-fitting in the presence of gross
errors [22], [29], [66], [86] and, more recently, to fault
location [8], [9], [27] and robust device modeling [12].

Notice that neither ||e||,, nor |le||; is differentiable in
the ordinary sense. Therefore, their minimization requires
algorithms that are much more sophisticated than those
for the /, optimization.

F. The One-Sided and Generalized | , Functions

By using an /, norm, we try to minimize the errors
towards a zero value. In cases where we have upper and
lower specifications, a negative value of e, simply indicates
that the specification is exceeded at that point which, in a
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sense, is better than having e = 0. This fact leads to the
one-sided /, function defined by

Hf (e)= [ )y |e,lf’rp

jer

(12)

where J = {jle, > 0}. Actually, if we define e =
max {e,0}, then HS (e)=|le"|,.

Bandler and Charalambous [10], [41] have proposed the
use of a generalized /, function defined by

H} (e
Hp(e) = {Hp"ie;

if the set J is not empty

(13)

otherwise

m -1/p
H; (e) =—[ g—m”} N

In other words, when at least one of the e; is nonnegative
we use H; , and H, is defined if all the error functions
have become negative.

Compared to (12), the generalized /, function has an
advantage in the fact that it is meaningfully defined for the
case where all the e, are negative. This permits its minimi-
zation to proceed even after all the specifications have
been met, so that the specifications may be further ex-
ceeded.

A classical example is the design of Chebyshev-type
bandpass filters, where we have to minimize the gener-
alized minimax function

(15)

The current Version 1.5 of TOUCHSTONE [105] offers
the generalized /, optimization techniques, including
minimax.

H_ (e)= mjz;lx{ej}.

G. The Acceptable Region

We use H(e) as a generic notation for |lef|,, H, (e),
and H,(e). The sign of H(e(¢)) indicates whether or not
all the specifications are satisfied by ¢. An acceptable
region is defined as

R,={¢|H(e(9)) <0} (16)

Figs. 2(c), 2(d), 3(c), and 3(d) depict the /, functions and
the acceptable regions.

II1.

In a nominal design, without considering tolerances (i.e.,
assuming that modeling and manufacturing can be done
with absolute accuracy), we seek a single set of parameters,
called a nominal point and denoted by ¢° which satisfies
the specifications. Furthermore, if we consider the func-
tional relationship of ¢ =¢¥(¢%) to be precise, then it
does not really matter at which level the design is con-
ceived. In fact, traditionally it is often oriented to an
equivalent circuit. A classical case is network synthesis

NOMINAL CIRCUIT OPTIMIZATION
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where ¢H-0 is obtained through the use of an equivalent
circuit and /or a transfer function. A low-level model ¢*-°
is then calculated from ¢9, typically with the help of an
empirical formula (e.g., the number of turns of a coil is
calculated for a given inductance). Finally, we try to
realize 50 by its physical counterpart $*:°,

With the tool of mathematical optimization, the nominal
point ¢° (at a chosen level) is obtained through the mini-
mization of U(x), where the objective function is typically
defined as an /, function H(e). The vector x contains all
the elements of or a subset of the elements of ¢°. It is a
common practice to have some of the variables normal-
ized. It is also common to have several model parameters
tied to a single variable. This is true, e.g., for symmetrical
circuit structures but, most importantly, it is a fact of life
in integrated circuits. Indeed, such dependencies should be
taken into account both in design and in modeling to
reduce the dimensionality. The minimax optimization of
manifold multiplexers as described by Bandler ef al. [18],
[22], [28] provides an excellent illustration of large-scale
nominal design of microwave circuits.

Traditionally, the approach of nominal design has been
extended to solving modeling problems. A set of measure-
ments made on the physical system serves as single specifi-
cations. Error functions are created from the differences
between the calculated responses F(¢°) and the measured
responses FM. By minimizing an I, norm of the error
functions, we attempt to identify a set of model parameters
¢° such that F(¢°) best matches F™. This is known as
data fitting or parameter identification.

Such a casual treatment of modeling as if it were a
special case of design is often unjustifiable, due to the lack
of consideration to the uniqueness of the solution. In
design, one satisfactory nominal point, possibly out of
many feasible solutions, may suffice. In modeling, how-
ever, the uniqueness of the solution is almost always
essential to the problem. Affected by uncertainties at many
levels, unavoidable measurement errors and limited acces-
sibility to measurement points, the model obtained by a
nominal optimization is often nonunique and unreliable.
To overcome these frustrations, a recent multicircuit ap-
proach will be described in Section IV.

IV. A MULTICIRCUIT APPROACH

The approach of nominal circuit optimization, which we
have described in Section III, focuses attention on a cer-
tain kind of idealized situation. In reality, unfortunately,
there are many uncertainties to be accounted for. For the
physical system, without going into too many details,
consider

FM = FMO(oM)+ AF™

oM = M0 + AgM (17)
where AFM represents measurement errors, a nomi-
nal value for ¢, and A¢p™ some physical (manufacturing,
operating) tolerances.

M0
¢
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For simulation purposes, we may consider a realistic
representation of the hierarchy of possible models as

FH=F"O(FF)+ AFY

FL= FL,O(¢H) +AFL

¢H= ¢H,0(¢L) + A¢H

¢F =0+ ApE (18)

where ¢%0, ¢70 FL.0 and F¥° are nominal models
applicable at different levels. A¢”, Ao, AFE, and AF?
represent uncertainties or inaccuracies associated with the
respective models. A¢” corresponds to the tolerances A¢p™.
A¢f may be due to the-approximate nature of an empirical
formula. Parasitic effects which are not adequately mod-
eled in ¢¥ will contribute to AF’, and finally we attribute
anything else that causes a misrnatch between FH-° and
FMO 1o AFH,

These concepts can be illustrated by the one-section
stripline transformer example [235] which we have consid-
ered in Section II. Tolerances may be imposed on the
physical parameters including the strip widths and thick-
nesses, the dielectric constants, the section length and
substrate thicknesses (see Fig. 1). Such tolerances corre-
spond to A¢™ and are represented in the model by A¢’.
We may also use A¢p” to represent uncertainties associated
with the empirical formulas which relate the physical
parameters to the equivalent circuit parameters (the effec-
tive line widths, the junction inductances, and the effective
section length). Mismatches in the terminations at differ-
ent frequencies may be estimated by AF? (FH being the
actual reflection coefficient; see | 25] for more details).

The distinction between different levels of model uncer-
tainties can be quite subtle. As an example, consider the
parasitic resistance r associated with an inductor whose
inductance is L. Both L and r are functions of the
number of turns of a coil (which is a physical parameter).
Depending on whether or not r is modeled by the equiv-
alent circuit (i.e., whether or not r is included in ¢7), the
uncertainty associated with r may appear in A¢? or in
AFL,

When such uncertainties are present, a single nominal
model often fails to represent satisfactorily the physical
reality. One effective solution to the problem is to simulta-
neously consider multiple circuits. We discuss the conse-
quences for design and modeling separately.

A. Multicircuit Design

Our primary concern is to improve production yield and
reduce cost in the presence of tolerances A¢* and model
uncertainties A¢¥”. First of all, we represent a realistic
situation by multiple circuits as

¢&F = ¢° + 5%, k=12,---,K (19)

where ¢°, ¢*, and s* are generic notation for the nominal
parameters, the kth set of parameters, and a deviate due to
the uncertainties, respectively. A more elaborate definition
is developed as we proceed.
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parameter space

(zero yield)

high yield

Fig. 4. Three nominal points and the related yield.

For each circuit, we define an acceptance index by
Ia(‘l’):{l’ if H(e(¢)) <0 (20)

0, otherwise

where H(e) <0, defined in (13), indicates satisfaction of
the specifications by ¢. An estimate of the yield is given by
the percentage of acceptable samples out of the total, as

L

The merit of a design can then be judged more realistically
according to the yield it promises, as illustrated in Fig. 4.
Now we shall have a closer look at the definition of
multiple circuits.

In the Monte Carlo method the deviates s* are con-
structed by generating random numbers using a physical
process or arithmetical algorithms. Typically, we assume a
statistical distribution for A¢*, denoted by D”*(e”™) where
e’ is a vector of tolerance variables. For example, we may
consider a multidimensional uniform distribution on
[~ ek, eL]. Similarly, we assume a D¥(ef’) for A¢”. The
uniform and Gaussian (normal) distributions are il-
lustrated in Fig. 5.

At the low level, consider

P F =90+ sk, k=1,2,---,K* (22
where s’-* are samples from DZL. At the higher level, we
have, for each k,

G koi = HO 4 gH Kol i=1,2,- -+, KH

(23)
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Fig. 5. Typical tolerance distributions: uniform and Gaussian (normal).
where

¢H,0=¢H,0(¢L,0)
sH,k,i=¢H,0(¢L,k)___ ¢H,O(¢L,0)+ Sk,i

with 8%/ being samples from DZ,

One might propose a distribution for s#*7 which pre-
sumably encompasses the effect of distribution DL and
distribution D¥. But, while we may reasonably assume
simple and independent distributions for A¢" and Aé?,
the compound distribution is likely to be complicated and
correlated.

(24)

B. Centering, Tolerancing, and Tuning

Again, in order to simplify the notation, we use ¢° for
the nominal circuit and e for the tolerance variables.

An important problem involves design centering with
fixed tolerances, usually relative to corresponding nominal
values. We call this the fixed tolerance problem (FTP). The
optimization variables are elements of ¢°, the elements of
¢ are constant or dependent on the variables, and the
objective is to improve the yield. Incidentally, the nominal
optimization problem, i.e., the traditional design problem,
is sometimes referred to as the zero tolerance problem
(ZTP). :

Since imposing tight tolerances on the parameters will
increase the cost of component fabrication or process
operation, we may attempt to maximize the allowable
tolerances subject to an acceptable yield. In this case both
¢° and & may be considered as variables. Such a problem
is referred to as optimal tolerancing, optimal tolerance
assignment, or the variable tolerance problem (VTP),

Tuning some components of ¢ after production,

‘whether by the manufacturer or by a customer, is quite

commonly used as a means of improving the yield. This
process can also be simulated using the model by introduc-
ing a vector of designable tuning adjustments ¥ for each
circuit, as

¢k=¢0+sk+,rk, k=1’2’...’K_

(25)

We have to determine, through optimization, the value of
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parameter space

outcomes before tuning

tuned outcomes

(@)

parameter space

nontunable points

tunable
points

nontunable

nontunable points

tunable

()
Fig. 6. Tllustrations of tuning: (a) both parameters are tunable for a
case in which the probability that an untuned des1gn meets the specifi-
cations is very low and (b) only one parameter is tunable.’

7% such that the specifications will be satisfied at ¢* which
may otherwise be unacceptable, as depicted in Figs. 6 and
7. The introduction of tuning, on the other hand, also
increases design complexity and manufacturmg cost. We

seek a suitable compronmse by solving an optimization:

problem in which 7 are treated as part of the variables.
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Fig. 7. An illustration of multicircuit design conmdenng e1ght circuit
outcomes. ¢, is toleranced and ¢, 'is tunable, (a) Without tuning the
yield is 2/8 (25 percent). (b) Tuning on ¥, is restricted to a small
range. The improved yield is 4,/8 (50 percent). (¢) A 75 percent yield is
achzeved by allowing a large tumng range.

From nommal design, centering, optimal tolerancmg, 10
optimal tuning, we have defined a range. of problems
which lead to 1ncreas1ngly improved yield but, on the other
hand, correspond to- mcreasmg nvomplexny Some specific
formulations are dlscussed in"Section V. Analogously to
ZTP, FTP, and VTP, we can defme zero tuning, flxed
tumng, and variable tuning problems [20]
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C. Multicircuit Modeling

The uncertainties that affect circuit modeling can be
discussed under the following categories.

1) Measurement errors will inevitably exist in practice,
as represented by AFM in (17); FM=FM.pM)+
AFM,

2) Even without measurement errors, the calculated re-
sponse F™:% may never be able to match F-° per-
fectly, due to, for example, the use of a model of
insufficient order or inadequate complexity. Such an
inherent mismatch is accounted for in (18) by F¥ =
FHO 4 AFH

3) Even if neither AF™ nor AF¥ exists so that F70 =
FM we may still not be able to uniquely identify ¢
from the set of measurements that has been selected.
This happens when the system of (generally nonlin-
ear) equations F#0(¢)— FM =0, where FM is the
data, is underdetermined. Typically, this problem
occurs when, for any reason, many internal nodes are
inaccessible to direct measurement. An overcom-
plicated equivalent circuit, including unknown para-
sitic elements, is frequently at the heart of this phe-
nomenon.

4) The parasitic effects that are not adequately modeled
by ¢ contribute to the uncertainty AFL. This is
another source of interference with the modeling
process.

First we consider the case in which modeling is applied
to obtain a suitable ¢ such that F7(¢) approximates F™.
The nominal circuit approach may be able to cope with the
uncertainties in 1) and 2), and comes up with a ¢ which
minimizes the errors AFM and AF¥ in a certain sense.
But it will not be able to overcome the problem of unique-
ness. In practice, we are often unable to determine unam-
biguously the identifiability of a system, because all these
uncertainties can be present at the same time. There will
be, typically, a family of solutions which produce reason-
able and similar matches between the measured and the
calculated responses. We cannot, therefore, rely on any
particular set of parameters.

The approach of multicircuit modeling by Bandler ez al.
[12] can be used to overcome these difficulties. Multiple
circuits are created by making deliberate adjustments on
the physical parameters ¢™. For example, we can change
the biasing conditions for an active device and obtain
multiple sets of measurements. By doing so, we introduce
perturbations to the model which cause some parameters
in ¢ to change by an unknown amount. For this approach
to be successful, each physical adjustment should produce
changes in only a few parameters in é.

Although we do not know the changes in ¢ quantita-
tively, it is often possible to identify which model parame-
ters may have been affected by the physical adjustments.
Such a qualitative knowledge may be apparent from the
definition of the model or it may come from practical
experience. In the attempt to process multiple circuits
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Fig. 8. An illustration of multicircuit modeling. Three circuits are
created by making two physical adjustments. Assume that we know
that ¢; should not be affected by the physical adjustments. C°, C?,
and C? are contours of the error functions corresponding to the three
circuits. (a) By treating the three circuits separately, we obtain ¢°, ¢',
and ¢%. ¢%, ¢}, and ¢ turn out to have different values (which 1s
inconsistent with our knowledge) because of uncertainties. (b) Con-

sistent results can be obtained by defining ¢; as a common variable
and processing three circuits simultaneously.

simultaneously, we define those model parameters that are
not supposed to change as common variables and, at the
same time, allow the others to vary between different
circuits. By doing so, we force the solution to exhibit the
desired consistency and, therefore, improve the reliability
of the result. In other words, from a family of possible
solutions we select the one that conforms to the topologi-
cal constraints. Bandler et al. have shown an example [12,
Section I1I-A] in which ¢ can not be uniquely identified
due to inaccessible nodes. The problem was effectively
addressed using the multicircuit approach.
To formulate this mathematically, let

oF
¢= LL‘}

where ¢f contains the common variables and ¢ contains
the variables which are allowed to vary between the kth
circuit and the reference circuit ¢°. We then define the
optimization variables by

(26)

x=[(6")7(e)" - (e5)7]" 27)
and state the optimization problem as to
minimize U(x) = || 1], (28)
where
£=1[e"(¢%) e7(¢") -+~ eT(%)]". (29)

Although any /, norm may be used, the unique property
of /, discussed in detail by Bandler er al. [12] can be
exploited to great advantage. The concept of common and
independent variables is depicted in Fig,. 8.

Now, suppose that we do not have a clear idea about
which model parameters may have been affected by the
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adjustment on ¢™. In this case, we let

x=[(e)" ()7 (9]

and change the objective function to an /, norm of

£=[e7(8) -+ eT(67) an(# = 4) " - (65 - 9]
()

where q, a,, * +, G are nonnegative multipliers (weights).

Using this formulauon while minimizing the errors e,
we penalize the objective function for any deviates be-
tween ¢* and ¢°, since our only available knowledge is
that only a few parameters in ¢* should have any signifi-
cant changes. To be effective, an /; norm should be used.
A similar principle has been successfully applied to the
analog circuit fault location problem [9], [27].

A practical application to FET modeling has been de-
scribed by Bandler et al. in [16], where multiple circuits
were created by taking three sets of actual measurements
under different biasing conditions.

Another important application of multicircuit modeling
is to create analytical formulas which link the model ¢ to
the actual physical parameters ¢™. Such formulas will
become extremely useful in guiding an actual production
alignment or tuning procedure. A sequence of adjustments
on ¢ can be systematically made and multiple sets of
measurements are taken. By nominal circuit optimization,
these measurements would be processed separately to ob-
tain a set of static models. In the presence of uncertainties,
a single change in $* may seem to cause fluctuations in all
the model parameters. Obviously, such results are of very
little use. In contrast, multicircuit modeling is more likely
to produce models that are consistent and reliable. Since
the measurements are made systematically, it certainly
makes sense to process them simultaneously. Actually, the
variables need not be equivalent circuit model parameters.
They can include coefficients of a proposed formula as
well.

An example of establishing an experimental relationship
between the physical and model parameters for a multicav-
ity filter using multiple sets of actual measurements has
been described by Daijavad [44].

The multicircuit approach can also be applied to model
verification. This is typically related to cases where the
parasitic uncertainty AFZ has put the validity of a model
in doubt. Instead of defining common and independent
variables explicitly, we use the formulation of (30) and
(31). If consistent results are obtained, then our confidence
in the model is strengthened. Otherwise we should prob-
ably reject the current model and consider representing the
parasitics more adequately. A convincing example has
been demonstrated by Bandler ef al. [12, section V, test 2].

The commercial packages TOUCHSTONE [104], [105]
and SUPER-COMPACT [99] allow a hierarchy of circuit
blocks and permit the use of variable labels. Multiple
circuits and common variables can be easily defined utiliz-
ing these features.

(30)
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Fig. 9. A typical cost-versus-yield curve [97].

V. TECHNIQUES FOR STATISTICAL DESIGN

In Section IV we have generally discussed uncertainties
at different levels, and, in particular, we have expressed
our desire to maximize yield in the presence of uncertain-
ties. Optimal tolerancing and tuning have also been 1dent1-
fied as means to further reduce cost in the actual produc-
tion.

We begin this section with a review of some existing
techniques for statistical design. Some of the earliest work
in this area came from Karafin [68], Pinel and Roberts
[87], Butler [36], Elias [52], Bandler, Liu, and Tromp [24].
During the years, significant contributions have been made
by, among others, Director and Hachtel [47] (the simplicial
method), Soin and Spence [98] (the gravity method), Band-
ler and Abdel-Malek [1], [2], [7] (multidimensional ap-
proximation), Biernacki and Styblinski [30] (dynamic con-
straint approximation), Polak and Sangiovanni-Vincentelli
[90] (a method using outer approximation), as well as
Singhal and Pinel [97] (the parametric sampling method).
Following the review, we propose a generalized /, center-
ing algorithm.

A commonly assumed cost versus yield curve [97] is
shown in Fig. 9. Actually, hard data are difficult to obtain,
and, as we shall see, rather abstract objective functions are
often selected for the tolerance-yield design problem. Fig.
10 shows a design with a 100 percent yield and a second
design corresponding to the minimum cost.

A. Worst-Case Design

By this approach, we attempt to achieve a 100 percent
yield. Since it means that the specifications have to be
satisfied for all the possible outcomes, we need to consider
only the worst cases.

Bandler et al. [23], [24] have formulated it as a nonlinear
programming problem

minimize C{x)
X

subject to e(¢*) <0,  forall k (32)

where C(x) is a suitable cost function and the points ¢*
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maximum yield
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Fig. 10. A maximum yield design and a minimum cost design.

are the worst cases. For instance, we may have

c(x)= L =+ T by,

ier, & el

(33)

where I, and I, are index sets identifying the toleranced
and tunable parameters, respectively. &, and ¢, are the
tolerance and the tuning range, respectively, associated
with the ith parameter. a; and b, are nonnegative weights.
A cost function can also be defined for relative tolerances
and tuning by including ¢? into (33). A critical part of this
approach is the determination of the worst cases. Vertices
of the tolerance region, for example, are possible candi-
dates for the worst cases by assuming one-dimensional
convexity. The yield function does not enter (32) ex-
plicitly; instead, a 100 percent yield is implied by a feasible
solution. '

Bandler and Charalambous [11] have demonstrated a
solution to (32) by minimax optimization. Polak and
Sangiovanni-Vincentelli [90] have proposed a different but
equivalent formulation which involves a nondifferentiable
optimization. k

A worst-case design is not always appropriate. While
attempting to obtain a 100 percent yield, the worst-case
approach may necessitate unrealistically tight tolerances,
or demand excessive tuning. In either case, the cost may be
too high. A perfect 100 percent yield may not even be
realizable. ‘

B. Methods of Approximating the Acceptable Region

‘Since yield is given by the percentage of model out-
comes that fall into the acceptable region, we may wish to
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find an approximation to that region. The -acceptable
region has been defined in (16) as R, = {$|H(e($)) <0}.

Director and Hachtel [47] have devised a simplicial
approximation approach. It begins by determining points
¢* on the boundary of R, which is given by Q, =
{$|H(e(¢)) = 0}. The convex hull of these points forms a
polyhedron. The largest hypersphere inscribed within the
polyhedron gives an approximation to R, and is found by
solving a linear programming problem. Using line searches,
more points on the boundary are located and the poly-
hedron is expanded. The process thus provides a monoton-
ically increasing lower bound on the yield. The center and
radius of the hypersphere can be used to determine the
centered nominal point and the tolerances, respectively.
The application of this method is, however, severely limited
by the assumption of a convex acceptable region.

Bandler and Abdel-Malek [1], [2], [7] have presented a
method which approximates each e;(¢) by a low-order
multidimensional polynomial. Model simulations are per-

.formed at some ¢* selected around a reference point.

From the values of ej(zb") the coefficients of the ap-
proximating pelynomial are determined by solving a linear
system of equations. Appropriate linear cuts are con-
structed to approximate the boundary €,. The yield is
estimated through evaluation of the hypervolumes that lie
outside R, but inside the tolerance region. In critical
regions these polynomial approximations are updated dur-
ing optimization. The one-dimensional convexity assump-
tion for this method is much less restrictive than the
multidimensional convexity required by the simplicial ap-
proach. Sensitivities for the estimated yield are also avail-
able.

Recently, Biernacki and Styblinski [30] have extended
the work on multidimensional polynomial approxima-
tion by considering a dynamic constraint approximation
scheme. It avoids the large number of base points required
for a full quadratic interpolation by selecting a maximally
flat interpolation. During optimization, whenever a new
base point is added, the approximation is updated. It
shows improved accuracy compared with a linear model as
well as reduced computational effort compared with a full
quadratic model.

C. The Gravity Method

Soin and Spence [98] proposed a statistical exploration
approach. Based on a Monte Carlo analysis, the centers of
gravity of the failed and passed samples are determined as,

respectively,
¢f=[ X ¢k]/Kfaﬂ
keJ

*= [k§1¢k}/l<pass

where J is the index set identifying the failed samples.
Ky and K, are the numbers of failed and passed
samples, respectively. The nominal point ¢° is then ad-
justed along the direction s = ¢? — ¢/ using a line search.

(34)
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that for a given x the sign of U(x) does not depend on p,
g, or a,. However, the optimal solution x at which U(x)
attains its minimum is dependent on p, ¢, and a. This
means that using any values of p, g, and a we will be able
to achieve a U(x) <0 (i.e., to achieve a 100 percent yield).
Furthermore, by using different p, ¢, and a, we influence
the centering of ¢°. Interestingly, the worst-case centering
(39) becomes a special case by letting both p,g=oco and
using unit multipliers.

Now consider the case where the optimal yield is less
than 100 percent. In this case we propose the use of p=1
and ¢ =1 in (41). Also, given a starting point x,, we define
the set of multipliers by

a,=1/|v,(x0)]s k=1,2,---,K. (43)

Our proposition is based on the following reasoning (a
more complete theoretical justification is reserved for a
future paper).
Consider the /, sum given by
> [“k(x )] g
kel
where J = {k|u, > 0}. As p — 0 (44) approaches the total
number of unacceptable circuits which we wish to mini-
mize. The smallest p that gives a convex approximation is

1. This leads to the generalized /; objective function given
by

(44)

Ux)= X u(x)= X aw(x). (45)

keJ keJ
With the multipliers defined by (43), the value of the
objective function at the starting point, namely U(x,), is
precisely the count of unacceptable circuits. Also, notice
that the magnitude of v, measures the closeness of ¢* to
the acceptable region. A small |v,| indicates that ¢* is
close to satisfying or violating the specifications. There-
fore, we assign a large multiplier to it so that more
emphasis will be given to ¢* during optimization. On the
other hand, we de-emphasize those points that are far
away from the boundary of the acceptable region because

their contributions to the yield are less likely to change.

One important feature of this approach is its capability
of accommodating arbitrary tolerance distributions, since
they only influence the generation of ¢*. The numerical
results we have obtained are very promising. The gener-
alized /, centering algorithm can also be extended to

include variable tolerances and tuning.

VI. EXAMPLES OF STATISTICAL DESIGN

Example 1

The classical two-section 10:1 transmission line trans-
former, originally proposed by Bandler ef al. [23] to test
minimax optimizers, is a good example for illustrating
graphically the basic ideas of centering and tolerancing.
An upper specification on the reflection coefficient as
lp] < 0.55 and 11 frequencies {0.5,0.6,---,1.5 GHz} are
considered. The lengths of the transmission lines are fixed
at the quarter-wavelength while the characteristic imped-
ances Z; and Z, are to be toleranced and optimized. Fig.

6

]
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Fig. 11. Contours of max |p,| with respect to Z; and Z, for the
two-section transformer indicating the minimax nominal solution a,
the centered design with relative tolerances b, and the centered design
with absolute tolerances ¢. The values in brackets are the optimized
tolerances (as percentages of the nominal values). The specification is
fp| < 0.55.

11 shows the minimax contours, the minimax nominal
solution, and the worst-case solutions [23] for

PO: minimize C; = Z)/e; + Z /e,
subject to ¥ =100 percent
P1: minimize C, =1/¢, +1/¢, subject to ¥ =100 percent

where ¢, &, denote tolerances on Z; and Z, (assuming
independent uniform distributions), and Y is the yield.
The cost functions C; and C, correspond to, respectively,
relative and absolute tolerancing problems. Two problems
of less than 100 percent yield have also been considered by
Bandler and Abdel-Malek [7] as

P2: minimize C, subject to ¥ > 90 percent
P3: minimize C, /Y.

The optimal tolerance regions and nominal values for
P2 and P3 are shown in Fig. 12. For more details see the
original paper [7].

Example 2

The statistical design of a Chebyshev low-pass filter
(Singhal and Pinel [97]) is used as the second example.
Fifty-one frequencies {0.02,0.04,---,1.0,1.3 Hz} are con-
sidered. An upper specification of 0.32 dB on the insertion
loss is defined for frequencies from 0.02 to 1.0 Hz. A lower
specification of 52 dB on the insertion loss is defined at
1.3 Hz.
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Fig. 12. The optimized tolerance regions and nominal values for the
worst case design P1, 90 percent yield design P2, and minimum cost
design P3 of the two-section transformer.

Singhal and Pinel [97] have applied the parametric sam-
pling method to the same circuit, assuming normal distri-
butions for the toleranced elements. But, as we have pointed
out earlier in this paper, the parametric sampling method
cannot be applied to nondifferentiable (such as uniform)
distributions. Here, we consider a uniformly distributed
1.5 percent relative tolerance for each component. The
generalized /, centering algorithm described in Section V
is used with p=1. The nominal solution by standard
synthesis as given in [97] was used as starting point, which
has a 49 percent yield (w.r.t. the tolerances specified). An
84 percent yield is achieved at the solution which involves
a sequence of three design cycles with a total CPU time of
66 seconds on the VAX 8600. Some details are provided in
Table L

VIL

So far we have concentrated on translating our practical
concerns into mathematical expressions. Now we turn our
attention to the solution methods for optimization prob-
lems.

The studies in the last two decades on the theoretical
and algorithmic aspects of optimization techniques have
produced a great number of results. Modern state-of-the-art
methods have largely replaced the primitive trial-and-
error-approach. In particular, gradient-based optimization
methods have gained increasing popularity in recent years
for their effectiveness and efficiency.

The majority of gradient-based methods belong to the
Gauss—Newton, quasi-Newton, and conjugate gradient
families. All these are iterative algorithms which, from a

GRADIENT-BASED OPTIMIZATION METHODS
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TABLEI
STATISTICAL DESIGN OF A Low-Pass FILTER USING
GENERALIZED /; CENTERING TECHNIQUE

Component Nominal Design Case 1 Case 2 Case 3
¢10,0 %0,1 1)10,2 %0'3
xt 0.2251 0 21954 0.21705 021530
X2 02494 025157 0.24677 0.23838
X3 0.2523 0.25529 024784 0 24120
X4 0.2494 0 24807 024019 023687
X§ 0.2251 022042 021753 021335
X6 02149 022627 0 23565 023093
x7 03636 036739 0.37212 0 38225
xg 0.3761 0.36929 038012 039023
x9 0.3761 0.37341 038371 039378
X10 0.3636 0.36732 0.37716 0.38248
X1 0.2149 0.22575 022127 023129
Yield 49% 71.67% 79.67% 83.67%
Number of samples 50 100 100
used for design
Starting point $00 $0.1 $0.2
Number of iterations 16 18 13
- CPU time (VAX 8600) 10 sec. 30 sec 28 sec
uniform distributi are d for each with fixed tol

g, = 1.5% $,0. The yield is estimated based on 300 samples

given starting point x,, generate a sequence of points
{x,}. The success of an algorithm depends on whether
{x,} will converge to a point x* and, if so, whether x*
will be a stationary point. An iterative algorithm is de-
scribed largely by one of its iterations as how to obtain
X, 4 from x,.

We use the notation U(x) for the objective function and
v U for the gradient vector of U. When U(x) is defined by
an /, function, we use f to denote the set of individual
error functions so that U= H( f). We also use f’ for the
first-order derivatives of f; and G for the Jacobian matrix
of f.

A. I, Optimization and Mathematical Programming

Of the /, family, /,, [,, and I are the most distinctive
and by far the most useful members. Apart from their
unique theoretical properties, it is very important from the

* algorithmic point of view that linear /;, /,, and [ prob-

lems can be solved exactly using linear or quadratic pro-
gramming techniques. Besides, all the other members of
the /, family have a continuously differentiable function
and, therefore, can be treated similarly to the /, case.

An 1, 1,, or I optimization problem can be converted
into a mathematical program. The concepts of local lin-
earization and optimality conditions are often clarified by
the equivalent formulation.

For instance, the minimization of || f|}, is equivalent to

e
minimize ), Y
X,y

(46)

Jj=1
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TABLE I1
MATHEMATICAL PROGRAMMING EQUIVALENT FORMULATIONS FOR
{1, 15, AND [, OPTIMIZATION

minimize H(f)
x

The original problem

minimize V(x,y) subject to the constraints as defined below
xy

The equivalent problem

H(® Vix,y) constraints (forj = 1,2, ,m)
m
el ,—1y’ vzl y 2 -f
T, -
£ty vy v, =1
(188 y yzf,y= -fJ
m
N
HI® ,Zl Y, y,=f,y,20
+ T,
Hy® yy yzf,y20
HY @) y y=f,yz0
H_® y y zfj

Note A generalized €, function Hy(f) is defined through H,*(f) and Hy"() Hy is a

continuously differentiable function for allp < o,

subject to
%> f(x), 3> (=),

Other equivalent formulations are summarized in Table
II. For the convenience of presentation, we denote these
mathematical programming problems by P(x, f). One
important feature of P(x, f) is that it has a linear or
quadratic objective function. If f is a set of linear func-
tions, then P(x, f) becomes a linear or quadratic program
which can be solved using standard techniques. Equally
importantly, linear constraints can be easily incorporated
into the problem. Let P(x, f,D) be the problem of
P(x, f) subject to a set of linear constraints of the form

j=12,--- m.

alx+b,=0,

1=12,---, L,
: (47)
a’x+b,>0,

I=L,,+1,,L

where a, and b, are constants. If P(x, f) is a linear or
quadratic program, so is P(x, f, D). In other words, un-
constrained and linearly constrained linear /;, /,, and [
problems can be solved using standard linear or quadratic
programming techniques.

B. Gauss— Newton Methods Using Trust Regions

For a general problem, we may, at each iteration, sub-
stitute f with a linearized model f so that P(x, f) can be
solved.

For a Gauss—Newton type method, at a given point x,,
a linearization of f is made as

f(h) = f(x )+ G(x)h (48)

where G is the Jacobian matrix. We then solve the linear

or quadratic program P(h, f, D), where

D Ay>h,
Ay>—h

j=1,2,---,n 4
=l (49)
These additional constraints define a trust region in which
the linearized model f is believed to be a good approxi-
mation to f.

Another way to look at it is that we have applied a

semilinearization (Madsen [78]) to U(x) = H( f) resulting

in

U(k)=H(f(h)). (50)
It is important to point out that (50) is quite different from
a normal linearization as U(h) =U(x,)+[vU(x,)|"h
which corresponds to a steepest descent method. In fact
v U may not even exist. )

Denote the solution of P(h, f,D) by h,. If x,+h,
reduces the original objective function, we take it as the
next iterate; ie., if U(x,+h,)<U(x,) then x,,,=
X, + k. Otherwise we let x,_; = x;. In the latter case, the
trust region is apparently too large and, consequently,
should be reduced. At each iteration, the local bound A,
in (49) is adjusted according to the goodness of the lin-
earized model.

The above describes the essence of a class of algorithms
due to Madsen, who has called it method 1. Madsen [78]
has shown that the algorithm provides global convergence
in which the proper use of trust regions constitutes a
critical part. Such a method has been implemented as an
important element in the minimax and /, algorithms of
Hald and Madsen [65], [66]. In some other earlier work by
Osborne and Watson [85], [86] the problem P(h, f) was
solved without incorporating a trust region and the solu-
tion h, was used as the direction for a line search. For
their methods no convergence can be guaranteed and { x, }
may even converge to a nonstationary point.

Normally for the least-squares objective we have to solve
a quadratic program at each iteration, which can be a
time-consuming process. A remarkable alternative is the
Levenberg—Marquardt [76], [81] method. Given x,, it
solves

(s1)

where G =G(x,), f= f(x,), and 1 is an identity matrix.
The minimizer h, is obtained simply by solving the linear
system

minimize h"(G7G + 8,1)h +2 fGh + f7f
h

(GG +81)h,=—GTf (52)

using, for example, LU factorization. The Levenberg—
Marquardt parameter 8, is very critical for this method.
First of all, it is made to guarantee the positive definiteness
of (52). Furthermore, it plays, roughly speaking, an in-
versed role of A, to control the size of a trust region.
When 6, — o0, h, gives an infinitesimal steepest descent
step. When 6, =0, h, becomes the solution to P(h, f)
without bounds, which is equivalent to having A, — co.

The concept of trust region has been discussed in a
broader context by Moré in a recent survey [82].
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C. Quasi-Newton Methods

Quasi-Newton methods (also known as variable metric
methods) are originated in and steadily upgraded from the
work of Davidon [45] and Broyden [33], [34], as well as
Fletcher and Powell [55].

For a differentiable U(x), a quasi-Newton step is given
by

h,=— o, B 'vU(x,) (53)

where B, is an approximation to the Hessian of U(x) and
the step size controlling parameter «, is to be determined
through a line search. However, on some occasions such as
in the /; or minimax case, the gradient VU may not exist,
much less the Hessian.
We can gain more insight to the general case by examin-
ing the optimality conditions. Applying the Kuhn-Tucker
" conditions for nonlinear programming [70] to the equiv-
alent problem P(x, f), we shall find a set of optimality
equations

R(x)=0. (54)

Since a local optimum x* must satisfy these equations,
we are naturally motivated to solve (54), as a means of
finding the minimizer of U(x). A quasi-Newton step for
solving nonlinear equations (54) is given by

h,=—a,J7'R(x,) (55)
where J, is an approximate Jacobian of R(x). Only when
U(x) is differentiable will we have the optimality equa-
tions as R(x) =vU(x) =0 and (55) reverts to (53).

Hald and Madsen [65], [66] and Bandler et al. [21], [22]
have described the implementation of a quasi-Newton
method for the minimax and /; optimization in which the
objective functions are not differentiable. Clarke [43] has
introduced the concept of generalized gradient, with which
optimality conditions can be derived for a broad range of
problems.

Quasi-Newton methods, whether in (53) or (55), all
require updates of certain approximate Hessians. Many
formulas have been proposed over the years. The best
known are the Powell symmetric Broyden (PSB) update
[91], the Davidon-Fletcher—Powell (DFP) update {45],
[55], and the Broyden—Fletcher—Goldfarb—Shanno (BFGS)
update [35], [53], [60], [95]. The merits of these formulas
and a great many other variations are often compared in
terms of their preservation of positive definiteness, conver-
gence to the true Hessian, and numerical performance (see,
for instance, Fletcher [54] and Gill and Murray [59]).

Another important point to be considered is the line
search. Ideally, «, is chosen as the minimizer of U in the
direction of line search so that AT vU(x,+h,)=0. If
exact line searches are executed, Dixon [50] has shown that
theoretically all members of the Broyden family [34], [53]
would have the same performance. In practice, however,
exact line search is deemed too expensive and is therefore
replaced by other methods. An inexact line search usually
limits the evaluation of U and vU to only a few points.
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Interpolation and extrapolation techniques (such as a
quadratic or cubic fit) are then incorporated.

D. Combined Methods

The distinguishing advantage of a quasi-Newton method
is that it enjoys a fast rate of convergence near a solution.
However, like the Newton method for nonlinear equations,
the quasi-Newton method is not always reliable from a
bad starting point.

Hald and Madsen [65], [66], [7¢] have suggested a class
of two-stage algorithms. A first-order method of the
Gauss—Newton type is employed in stage 1 to provide
global convergence to a neighborhood of a solution. When
the solution is singular, method 1 suffers from a very slow
rate of convergence and a switch is made to a quasi-New-
ton method (stage 2). Several switches between the two
methods may take place and the switching criteria ensure
the global convergence of the combined algorithm.
Numerical examples of circuit applications have demon-
strated a very strong performance of the approach [21],
[22], [79], [80].

Powell [92] has extended the Levenberg—Marquardt
method and suggested a trust-region strategy which inter-
polates between a steepest descent step and a Newton step.
When far away from the solution, the step is biased toward
the steepest descent direction to make sure that it is
downhill. Once close to the solution, taking a full Newton
step will provide rapid final convergence.

E. Conjugate Gradient Methods

Some extremely large-scale engineering applications in-
volve hundreds of variables and functions. Although the
rapid advances in computer technology have enabled us to
solve increasingly larger problems, there may be cases in
which even the storage of a Hessian matrix and the solu-
tion of an n by n linear system become unmanageable.

Conjugate gradient methods [56], [75], [88] provide an
alternative for such problems. A distinct advantage of
conjugate gradient methods is the minimal requirement of
storage. Typically three to six vectors of length n are
needed, which is substantially less than the requirement by
the Gauss—Newton or quasi-Newton methods. However,
proper scaling or preconditioning, near-perfect line searches
and appropriate restart criteria are usually necessary to
ensure convergence. In general, we have to pay the price
for the reduced storage by enduring a longer computation
time.

VIIL

The application of gradient-based /, optimization meth-
ods requires the first-order derivatives of the error func-
tions with respect to the variables.

In circuit optimization, these derivatives are usually
obtained from a sensitivity analysis of the network under
consideration. For linearized circuits in the frequency do-
main, it is often possible to calculate the exact sensitivities
by the adjoint network approach [5), [31], [48].

GRADIENT CALCULATION AND APPROXIMATION



440 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, FEBRUARY 1988

However, we ought to recognize that an explicit and
elegant sensitivity expression is not always available. For
time-domain responses and nonlinear circuits, an exact
formula may not exist. Even for linear circuits in the
frequency domain, large-scale networks present new prob-
lems which need to be addressed.

Often, a large-scale network can be described through
compounded and interconnected subnetworks. Many com-
mercial CAD packages such as SUPER-COMPACT [99]
and TOUCHSTONE [104], [105] have facilitated such a
block structure. In this case, one possible approach would
be to assemble the overall nodal matrix and solve the
system of equations using sparse techniques (see, e.g., Duff
[51], Gustavson [61], Hachtel ez al. [62]). Another possibil-
ity is to rearrange the overall nodal matrix into a bor-
dered block structure which is then solved using the Sher-
man—Morrison-Woodbury formula [63], [96]. Sometimes
it is also possible to develop efficient formulas for a special
structure, such as the approach of Bandler et al. {17] for
branched cascaded networks.

In practice, perhaps the most perplexing and time-con-
suming part of the task is to devise an index scheme
through which pieces of lower level information can be
brought into the overall sensitivity expression. It may also
require a large amount of memory storage for the various
intermediate results. Partly due to these difficulties, meth-
ods of exact sensitivity calculations have yet to find their
way into general-purpose CAD software packages, al-
though the concept of adjoint network has been in ex-
istence for nearly two decades and has had success in
many specialized applications.

In cases where either exact sensitivities do not exist or
are too difficult to calculate, we can utilize gradient ap-
proximations [15], [16], [77], [109]. A recent approach to
circuit optimization with integrated gradient approxima-
tions has been described by Bandler et al. {16]. It has been
shown to be very effective and efficient in practical appli-
cations including FET modeling and multiplexer optimiza-
tion.

IX. CONCLUSIONS

In this review, we have formulated realistic circuit de-
sign and modeling problems and described their solution
methods. Models, variables, and functions at different
levels, as well as the associated tolerances and uncertain-
ties, have been identified. The concepts of design center-
ing, tolerancing, and tuning have been discussed. Recent
advances in statistical design, yield enhancement, and
robust modeling techniques suitable for microwave CAD
have been discussed in detail. State-of-the-art optimization
techniques have been addressed from both the theoretical
and algorithmic points of view.

We have concentrated on aspects that are felt to be
immediately relevant to and necessary for modern micro-
wave CAD. There are, of course, other related subjects
that have not been treated or not adequately treated in this
paper. Notable among these are special techniques for very
large systems (Geoffrion [57], [58], Haimes [64], Lasdon

[72]), third-generation simulation techniques (Hachtel and
Sangiovanni-Vincentelli [63]), fault diagnosis (Bandler and
Salama [27]), supercomputer-aided CAD (Rizzoli et al.
[93]), the simulated annealing and combinatorial optimiza-
tion methods and their application to integrated circuit
layout problems [38], [69], [84], and the new automated
decomposition approach to large scale optimization
(Bandler and Zhang [28]).

The paper is particularly timely in that software based
on techniques which we have described is being integrated
by Optimization Systems Associates Inc. into SUPER-
COMPACT by arrangement with Compact Software Inc.
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