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Abstract —This paper reviews the current state of the art in circuit

optimization, emphasizing techniques suitable for modem microwave CAD.

It is directed at the solution of reafistic design and modeling problems,

addressing such concepts as physical tolerances and model uncertainties. A

unified hierarchical treatment of circuit models forms the basis of the

presentation. It exposes tolerance phenomena at different parameter/

response levels. The concepts of design centering, tolerance assignment,

and postproduction tnning in relation to yield enhancement and cost

reduction suitable for integrated circuits are discussed. Suitable ‘techniques

for optimization oriented worst-case and statistical design are reviewed. A

generalized 1P centeriug afgoritfun is proposed and discussed. Multicircuit

optimization directed at both CAD and robust device modeling is formali-

zed. Tuning is addressed in some detail, both at the design stage and for

production afignment. State-of-the-art gradient-based nonlinear optimiza-

tion methods are reviewed, with emphasis given to recent, but well-tested,

advances in minimax, 11, and 12 optimization. Itlnstrative examples as well

as a comprehensive bibliography are provided.

I. INTRODUCTION

c OMPUTER-AIDED circuit optimization is certainly

one of the most active areas of interest. Its advances

continue; hence the subject deserves regular review from

time to time. The classic paper by Temes and Calahan in

1967 [102] was one of the earliest to formally advocate the

use of iterative optimization in circuit design. Techniques

that were popular at the time, such as one-dimensional

(single-parameter) search, the Fletcher-Powell procedure

and the Remez method for Chebyshev approximation,

were described in detail and well illustrated by circuit

examples. Pioneering papers by Lasdon, Suchman, and

Waren [73], [74], [108] demonstrated optimal design of

linear arrays and filters using the penalty function ap-

proach. Two papers in 1969 by Director and Rohrer [48],

[49] originated the adjoint network approach to sensitivity

calculations, greatly facilitating the use of powerful gradi-

ent-based optimization methods. In the same period, the

work by Bandler [4], [5] systematically treated the formulat-

ion of error functions, the least p th objective, nonlinear

constraints, optimization methods, and circuit sensitivity

analysis.
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Since then, advances have been made in several major

directions. The development of large-scale network simula-

tion and optimization techniques have been motivated by

the requirements of the VLSI era. Approaches to realistic

circuit design where design parameter tolerances and yield

are taken into account have been pioneered by Elias [52]

and Karafin [68] and furthered by many authors over the

ensuing years. Optimization methods have evolved from

simple, low-dimension-oriented algorithms into sophisti-

cated and powerful ones. Highly effective and efficient

solutions have been found for a large number of spe-

cialized applications. The surveys by Calahan [37],

Charalambous [39], Bandler and Rizk [26], Hachtel and

Sangiovanni-Vincentelli [63], and Brayton et al. [32] are

especially relevant to circuit designers.

In the present paper, we concentrate on aspects that are

relevant to and necessary for the continuing move to

optimization of increasingly more complex microwave cir-

cuits, in pmticular to MMIC circuit modeling and design.

Consequently, we emphasize optimization-oriented ap-

proaches to deal more explicitly with process imprecision,

manufacturing tolerances, model uncertainties, measure-

ment errors, and so on. Such realistic considerations arise

from design problems in which a large volume of produc-

tion is envisaged, e.g., integrated circuits. They also arise

from modeling problems in which consistent and’ reliable

results are expected despite measurement errors, structural

limitations such as physically inaccessible nodes, and model

approximations and simplifications. The effort to for-

mulate and solve these problems represents one of the

driving forces of theoretical study in the mathematics of

circuit CAD. Another important impetus is provided by

progress in computer hardware, resulting in drastic reduc-

tion in the cost of mass computation. Finally, the continu-

ing development of gradient-based optimization tech-

niques has provided us with powerful tools.

In this context, we review the following concepts: realis-

tic representations of a circuit design and modeling prob-

lem, nominal (single) circuit optimization, statistical circuit

design, and multicircuit modeling, as well as recent gradi-

ent-based optimization methods.

Nominal design and modeling are the corwentional ap-

proaches used by microwave engineers. Here, we seek a

single point in the space of variables selected for optimiza-

tion which best meets a given set of performance specifica-

tions (in design) or best matches a given set of response

measurements (in modeling). A suitable scalar measure
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of the deviation between responses and specifications

which forms the objective function to be minimized,.
is the ubiquitous least squares measure (see, for exarnplb,

Morrison [83]), the, more esoteric generalized 1P objective

(Charalarnbous [41]) or the minimax objective (Madsen

et al. [80]). We observe here that the performance-driven

(single-circuit) least squares approach that circuit design

engineers have traditionally chosen has proved unsuccess-

ful both in addressing design yield and in serious device

modeling.

Recognition that an actual realization of a nominal

design is subject to fluctuation or deviation led, in the

past, to the so-called sensitivity minimization approach

(see, for example, Schoeffler [94] and Laker et al. [71]).

Employed by filter designers, the approach involves mea-

sures of performance sensitivity, typically first-order, that

are included in the objective function.

In reality, uncertainties which deteriorate performance

may be due to physical (manufacturing, operating) toler-

ances as well as to parasitic effects such as electromagnetic

coupling ,between elements, dissipation, and dispersion

(Bandler [6], Tromp [107]). In the design of substantially

untunable circuits these phenomena lead to two important

classes of problems: worst-cake design and statistical de-

sign. The main objective is the reduction of cost or the

maximization of production yield.

Worst-case design (Bandler et al. [23], [24]), in general,

requires that all units meet the design specifications under

all circumstances (i.e., a 100 percent yield), with or without

tuning, ,depending on what is practical. In statistical design

[1], [26], [30], [47], [97], [98], [100], [101] it ii recognized

that a yield of less than 100 percent is likely; therefore,

with respect to an assumed probability distribution func-

tion, yield is estimated and enhanced by optimization.

Typically, we either attempt to center the design with fixed

assumed tolerances or we attempt to optimally assign

tolerances and/or design tunable elements to reduce pro-

duction cost.

What distinguishes all these problems from nominal

designs or sensitivity minimization is the fact that a single

design point is no longer of interest: a (tolerance) region of

multiple possible outcomes is to be optimally located with

respect to the acceptable (feasible, constraint) region.

Modeling, often unjustifiably treated as if it were a

special case of design, is particularly affected by uncertain-

ties and errors at many levels. Unavoidable measurement

errors, limited accessibility to measurement points, ap-

proximate equivalent circuits, etc., result in nonunique and

frequently inconsistent solutions. To overcome these frus-

trations, we advocate a properly constituted multicircuit

approach (Bandler et al. [12]).

Our presentation is outlined as follows.
In S@ion II, in relation to a physical engineering sys-

tem of interest, a typical hierarchy of simulation models

and corresponding response and performance functions

are introduced. Error functions arising from given specifi-

cations and a vector of optimization variables are defined.

Performance measures such as 1P objective functions (lP

norms and generalized ZP functions) are introduced and

their properties discussed.

We devote to Section III a brief review of the relatively

well-known and successful approach of nominal circuit

design optimization.

In Section IV, uncertainties that exist in the physical

system and at different levels of the model hierarchy are

discussed and illustrated by a practical example. Different

cases of multicircuit design, nanwly centering, tolerancing

(optimal tolerance assignment), and tuning at the design

stage, are identified. A multicircuit modeling approach and

several possible applicatiofis are described.

Some important and representative techniques in worst-

case and statistical design are reviewed in Section V. These

include the nonlinear programming approach to worst-case

design (Bandler et al. [24], Polak [89]), simplicial (Director

and Hachtel [47]) and multidimensional (Bandler and

Abdel-Malek [7]) approximations of the acceptable region,

the gravity method (Soi,n and Spence [98]), and the para-

metric sampling method (Singhal and Pinel [97]]. A gener-

alized 1P centering algorithm is proposed as a natural

extension to 1P nominal design. It provides a unified

formulation of yield enhancement for both the worst case

and the case where yield is less than 100 percent.

Illustrations of statistical desig~ are given in Section VI.

The studies in the last two decades on the theoretical

and algorithmic aspects of optimization techniques have

produced a great number of results. Iri particular,

gradient-based optimization methods have gained increas-

ing popularity in recent years for their effectiveness and

efficiency. The essence of gradient-based 1P optimization

methods is reviewed in Section VII. Emphasis is given to

the trust region Gauss–Newtor~ and the quasi-Newton

algorithms (Madsen [78], Mor6 [82], Dennis and Moral

[46]).

The subject of gradient calculation and approximation is

briefly discussed in Section VIII.

II. VARIABLES AND FUNCTIONS

In this section, we review some basic concepts of practi-

cal circuit optimization. In particular, we identify a physi-

cal system and its simulation models. We discuss a typical

hierarchy of models and the associated designable parame-

ters and response functions. We also define specifications,

error functions, optimization variables and objective func-

tions.

A. The Physical System

The physical engineering system under consideration

can be a network, a deticej a process, and so on, which has

both a fixed structure and given element types. We
manipulate the system through some adjustable parame-

ters contained in the column vector + ~. The superscript M

identifies concepts related to the physical system. Geomet-

rical dimensions such as the widl.h of a strip and the length

of a waveguide section are examples of adjustable parame-

ters.
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In the production of integrated circuits, @ may include

some fundamental variables which control, say, a doping

or photomasking process and, consequently, determine the

geometrical and electrical parameters of a chip. External

controls, such as the biasing voltages applied to an active

device, are also possible candidates for O“.

The performance and characteristics of the system are

described in terms of some measurable quantities. The

usual frequency and transient responses are typical’ exam-

ples. These measured responses, or simply measurements,

are denoted by F“(+M).

B. The Simulation Models

In circuit optimization, some suitable models are used to

simulate the physicdl system. Actually, models can be

usefully defined at many levels. Tromp [106], [107] has

considered an arbitrary number of levels (also see Bandler

et al. [19]). Here, for simplicity, we consider a hierarchy of

models consisting of four typical levels as

@= F~(F~)

FL= FL(+H)

+H=sfsq+L). (1)

@L is a set of low-level model parameters. It is supposed

to represent, as closely as possible, the adjustable parame-

ters in the actual system, i.e., +“. OH defines a higher-level

model, typically an equivalent circuit, with respect to a

fixed topology. Usually, we use an equivalent circuit for

the convenience of its analysis. The relationship between

@L and r$H is either derived from theory or given by a set

of empirical formulas.

Next on the hierarchy we define the model responses at

two possible levels. The low-level external representation,

denoted by FL, can be the frequency-dependent complex

scattering parameters, unterminated y-parameters, transfer

function coefficients, etc. Although these quantities may or

may not be directly measurable, they are very often used

to represent a subsystem. The high-level responses FH

directly correspond to the actual measured responses,

namely FM, which may be, for example, frequency re-

sponses such as return loss, insertion loss, and group delay

of a suitably terminated circuit.

A realistic example of a one-section transformer on strip-

line was originally considered by Bandler et al. [25]. The
circuits and parameters, physical as well as model, are

shown in Fig. 1. The physical parameters +~ (and the

low-level model @L) include strip widths, section lengths,

dielectric constants, and strip and substrate thicknesses.

The equivalent circuit has six parameters, considered as

+H, including the effective line widths, junction parasitic

inductances, and effective section length. The scattering

matrix of the circuit with respect to idealized (matched)

terminations is a candidate for a low-level external repre-

sentation (FL ). The reflection coefficient by taking into

account the actual complex terminations could be a high-

level response of interest (FH).

A B

A’ B’

(a)

A B

L, L2

Z1 Z2 Z3

0

“ -d~

Q

e -- d- cf

et b

A’ ~= bln2
rr

B’

(b)

Fig. 1. A microwave stripline transformer showing (a) the physical

structure and (b) the equivalent circuit model [25]. The physical param-

eters are

+M= [wlwzw3:l&&& blb2b3~,lts2t.3 IT
where w is the strip width, 1 the length of the middle section, e, the

dielectric constant, b the substrate thickness, and t,the strip thickness.
OM is represented in the simulation model by +L. The high-level

parameters of the equivalent circuit are

+H= [D1D2D3L1L21, ]T

where D is the effective linewidth, L the junction parasitic inductance,

and It the effective section length. Suitable empincaf formulas that

relate I$L to # can be found in [25].

For a particular case, we may choose a certain section of

this hierarchy to form a design problem. We can choose

either @L or +H as the designable parameters. Either FL or

FH or a suitable combination of both may be selected as

the response functions. Bearing this in mind, we simplify

the notation by using + for the designable parameters and

F for the response functions.

C. Specifications and Error Functions

The following discussion on specifications and error

functions is based on presentations by Bandler [5], and

Bandler and Rizk [26], where more exhaustive illustrations

can be found.

We express the desirable performance of the system by a

set of specifications which are usually functions of certain

independent variable(s) such as frequency, time, and tem-

perature. In practice, we have to consider a discrete set of

samples of the independent variable(s) such that satisfying

the specifications at these points implies satisfying them
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Fig. 2. Illustrations of (a) upper specifications, lower specifications, and

the responses of circuits a and b, (b) error functions corresponding to

circuits a and b, (c) the acceptable region, and (d) generalized 1P

objective functions defined in (13).

almost everywhere. Also, we may consider simultaneously

more than one kind of response. Thus, without loss of

generality, we denote a set of sampled specifications and

the corresponding set of calculated response functions by,

respectively,

s j=l,2,..., m

;’(+), j=l,2,. ... m. (2)

Error functions arise from the difference between the

given specifications and the calculated responses. In order

to formulate the error functions properly, we may wish to

distinguish between hating upper and lower specifications

(windows) and having single specifications, as illustrated in

Figs. 2(a) and 3(a). Sometimes the one-sidedness of upper

and lower specifications is quite obvious, as in the case of

designing a bandpass filter. On other occasions the distinc-

tion is more subtle, since a single specification may as well

be interpreted as a window having zero width.

In the case of having single specifications, we define the

error functions by

e,(+) = WJ13(0)–SJIJ j=l,2,. ... m (3)

where w, is a nonnegative weighting factor.

We may also have an upper specification SUj and a

lower specification S[j. In this case we define the error

o
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(b)

(ampty

parametar space

accaptabla region)

(c)
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Fig. 3. Illustrations of (a) a discretized single’ specification and two

discrete single specifications (e.g., expected parameter values to be
matched), as well as the responses of circuits a and b, (b) error

functions related to circuits a and b, (c) the (empty) acceptable region

(i.e., a perfect match is not possible) and (d) the corresponding 1P
norms.

functions as

e~j(+) ‘~.j(~(+)-~.j)> .i=J.

e,,(+) ‘W[j(q(+)- s/j)> j=J, (4)

where wUj and Wl, are nonnegative weighting factors. The

index sets as defined by

.Ju={jl,.j2, ””-, j~}

~l={j~+l,~~+z).””jjm} (5)

are not necessarily disjoint (i.e., we may have simultaneous

specifications). In order to have a. set of uniformly indexed

error functions, we let

e,=eUj(+), J=Ji, i=’12 . k?9 ””?

e,= –el, (~), j=ji, i=’k+l, k+2,. .”, m. (6)

The responses corresponding to the single specifications

can be real or complex, whereas upper and lower specifica-

tions are applicable to real responses only. Notice that, in

either case, the error functions are real. Clearly, a positive

(nonpositive) error function indicates a violation (satisfac-

tion) of the corresponding specification. Figs. 2(b) and

3(b) depict the concept of error functions.

D. Optimization Variables and Oljective Functions

Mathematically, we abstract a circuit optimization prob-

lem by the following statement:

minimize U(.X) (7)
x

where x is a set of optimization variables and U(x) a

scalar objective function.
Optimization variables and model parameters are two

separate concepts. As will be elaborated on later in this

paper, x may contain a subset c~f + which may have been

normalized or transformed, it may include some statistical

variables of interest, several parameters in @ may be tied

to one variable in x, and so on.
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Typically, the objective function U(x) is closely related

to an 1P norm or a generalized 1P function of e(+). We

shall review the definitions of such 1P functions and dis-

cuss their appropriate use in different contexts.

E. The 1P Norms

The 1P norm (Temes and Zai [103]) of e is defined as

[1
l/p

1141P= 5 Ie,lp . (8)
j=l

It provides a scalar measure of the deviations of the

model responses from the specifications. Least-squares (12)

is perhaps the most well-known and widely used norm

(Morrison [83]), which is

[1
1/2

11412= 5 lej12 . (9)
j=l

The 12 objective function is differentiable and its gradi-

ent can be easily obtained from the partial derivatives of e.

Partly due to this property, a large variety of 12 opti-

mization techniques have been developed and popularly

implemented. For example, the earlier versions of the

commercial CAD packages TOUCHSTONE [104] and

SUPER-COMPACT [99] have provided designers solely

the least-squares objective.

The parameter p has an important implication. By

choosing a large (small) value for p, we in effect place

more emphasis on those error functions (e, ‘s) that have

larger (smaller) values. By letting p = co we have the

minimax norm

llell~ = maxlejl (lo)
j

which directs all the attention to the worst case and the

other errors are in effect ignored. Minimax optimization is

extensively employed in circuit design where we wish to

satisfy the specifications in an optimal equal-ripple manner

[3], [13], [14], [21], [40], [42], [65], [67], [80], [85].

On the other hand, the use of the 11 norm, as defined by

IIW= 5 Ie,l (11)
j=l

implies attaching more importance to the error functions

that are closer to zero. This property has led to the

application of 11 to data-fitting in the presence of gross

errors [22], [29], [66], [86] and, more recently, to fault

location [8], [9], [27] and robust device modeling [12].

Notice that neither Ilell ~ nor Ilelll is differentiable in

the ordinary sense. Therefore, their minimization requires

algorithms that are much more sophisticated than those

for the 12 optimization.

1? The One-Sided and Generalized 1P Functions

By using an 1P norm, we try to minimize the errors

towards a zero value. In cases where we have upper and

lower specifications, a negative value of e, simply indicates

that the specification is exceeded at that point which, in a

sense, is better than having e, = O. This fact leads to the

one-sided 1P function defined by

[1

l/p

H;(e) = ~ le,lP (12)
jEJ

where J = { j Ie, > O}. Actually, if we define e,+ =

max{e,, O}, then H;(e) = Ile+ llP.

Bandler and Charalambous [10], [41] have proposed the

use of a generalized 1P function defined by

{

H;(e) if the set J is not empty
Hp(e) =

HP-(e)
(13)

otherwise

where

‘~(e)=-[x-ej)-pl-”p’14)
In other words, when at least one of the ej is nonnegative

we use Hz, and ~~ is defined if all the error functions

have become negatwe.

Compared to (12), the generalized 1P function has an

advantage in the fact that it is meaningfully defined for the

case where all the e~ are negative. This permits its minimiz-

ation to proceed even after all the specifications have

been met, so that the specifications may be further ex-

ceeded.

A classical example is the design of Chebyshev-type

bandpass filters, where we have to minimize the gener-

alized minimax function

H~(e) = max{ej}. (15)
J

The current Version 1.5 of TOUCHSTONE [105] offers

the generalized 1P optimization techniques, including

minimax.

G. The Acceptable Region

We use H(e) as a generic notation for Ilellp, H;(e),

and HP(e). The sign of H(e(@)) indicates whether or not

all the specifications are satisfied by +. An acceptable

region is defined as

R.= {~lH(e(@)) < O} (16)

Figs. 2(c), 2(d), 3(c), and 3(d) depict the 1Pfunctions and

the acceptable regions.

III. NOMINAL CIRCUIT OPTIMIZATION

In a nominal design, without considering tolerances (i.e., ‘

assuming that modeling and manufacturing can be done

with absolute accuracy), we seek a single set of parameters,

called a nominal point and denoted by +0, which satisfies

the specifications. Furthermore, if we consider the func-

tional relationship of OH= +~(+~) to be precise, then it

does not really matter at which level the design is con-

ceived. In fact, traditionally it is often oriented to an

equivalent circuit. A classical case is network synthesis
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where @’O is obtained through the use of an equivalent

circuit and/or a transfer function. A low-level model &O
~’”, typically with the help of anis then calculated from @

empirical formula (e.g., the number of turns of a coil is

calculated for a given inductance). Finally, we try to

realize ~ ‘Jo by its physical counterpart +~~”.

With the tool of mathematical optimization, the nominal

point @o (at a chosen level) is obtained through the mini-

mization of U(x), where the objective function is typically

defined as an 1P function H(e). The vector x contains all

the elements of or a subset of the elements of @o. It is a

common practice to have some of the variables normal-

ized. It is also common to have several model parameters

tied to a single variable. This is true, e.g., for symmetrical

circuit structures but, most importantly, it is a fact of life

in integrated circuits. Indeed, such dependencies should be

taken into account both in design and in modeling to

reduce the dimensionality. The minimax optimization of

manifold multiplexer as described by Bandler et al. [18],

[22], [28] provides an excellent illustration of large-scale

nominal design of microwave circuits.

Traditionally, the approach of nominal design has been

extended to solving modeling problems. A set of measure-

ments made on the physical system serves as single specifi-

cations. Error functions are created from the differences

between the calculated responses F( @o) and the measured

responses F‘. By minimizing an ZP norm of the error

functions, we attempt to identify a set of model parameters

+0 such that F(+”) best matches FM. This is known as

data fitting or parameter identification.

Such a casual treatment of modeling as if it were a

special case of design is often unjustifiable, due to the lack

of consideration to the uniqueness of the solution. In

design, one satisfactory nominal point, possibly out of

many feasible solutions, may suffice. In modeling, how-

ever, the uniqueness of the solution is almost always

essential to the problem. Affected by uncertainties at many

levels, unavoidable measurement errors and limited acces-

sibility to measurement points, the model obtained by a

nominal optimization is often nonunique and unreliable.

To overcome these frustrations, a recent multicircuit ap-

proach will be described in Section IV.

IV. A MULTICIRCUIT APPROACH

The approach of nominal circuit optimization, which we

have described in Section III, focuses attention on a cer-

tain kind of idealized situation. In reality, unfortunately,

there are many uncertainties to be accounted for. For the

physical system, without going into too many details,

consider

FM= FMO(@)+ AFM

&f= &f>o + A+M (17)

where AFM represents measurement errors, @“’O a nomi-

nal value for @M, and A@M some physical (manufacturing,

operating) tolerances.

For simulation purposes, we may consider a realistic

representation of the hierarchy of possible models as

FH=FH’O(FL)+AFH
FL= F’,O(@H) + AFL

+ff= (j)H,o(+’) + A+H

where +“0, +~f’o, F’,”, and F “o are nominal models

applicable at different levels. A$’, AOH, AFL, and AFH

represent uncertainties or inaccuracies associated with the

respective models. A@L corresponds’ to the tolerances A@~.

A@H maybe due to theapproximate nature of an empirical

formula. Parasitic effects which are not adequately mod-

eled in OH will contribute to A F‘, and finally we attribute

anything else that causes a mismatch between FH’O and

F“’O to AFH.

These concepts can be illustrated by the one-section

stripline transformer example [25] which we have consid-

ered in Section II. Tolerances may be imposed on the

physical parameters including the strip widths and thick-

nesses, the dielectric constants, the section length and

substrate thicknesses (see Fig. 1). Such tolerances corre-

spond to A~M and are represented in the model by A+’.

We may also use A~H to represent uncertainties associated

with the empirical formulas which relate the physical

parameters to the equivalent circuit parameters (the effec-

tive line widths, the junction inductances, and the effective

section length). Mismatches in the terminations at differ-

ent frequencies may be estimated by AFH (FH being the

actual reflection coefficient; see 1.25] for more details).

The distinction between different levels of model uncer-

tainties can be quite subtle. As an example, consider the

parasitic resistance r associated with an inductor whose

inductance is L. Both L and r are functions of the

number of turns of a coil (which is a physical parameter).

Depending on whether or not r is modeled by the equiv-

alent circuit (i.e., whether or not r is included in +~), the

uncertain y associated with r may appear in A@H or in

AFL.

When such uncertainties are present, a single nominal

model often fails to represent satisfactorily the physical

reality. One effective solution to the problem is to simulta-

neously considler multiple circuits. We discuss the conse-

quences for design and modeling separately.

A. Multicircuit Design

Our primary concern is to improve production yield and

reduce cost in the presence of tolerances A@L and model

uncertainties AOH. First of all, we represent a realistic

situation by multiple circuits as

+~=~o+~~, k=l,2,..., K (19)

where +0, #’, and s k are generic notation for the nominal

parameters, the kth set of parameters, and a deviate due to

the uncertainties, respectively. A more elaborate definition
is developed as we proceed.
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parameter space

high yield

Fig. 4. Three nominat points and the related yield.

For each circuit, we define an acceptance index by

{
la(+) = ;’ if H(e(r$)) <0

(20)
> otherwise

where H(e) <0, defined in (13), indicates satisfaction of

the specifications by@ An estimate of the yield is given by

the percentage of acceptable samples out of the total, as

[ 1/Y= 5 la(&) K.
k=l

(21)

The merit of a design can then be judged more realistically

according to the yield it promises, as illustrated in Fig. 4.

Now we shall have a closer look at the definition of

multiple circuits.

In the Monte Carlo method the deviates s k are con-

structed by generating random numbers using a physical

process or arithmetical algorithms. Typically, we assume a

statistical distribution for A@L, denoted by D‘( e=) where

eL is a vector of tolerance variables. For example, we may

consider a multidimensional uniform distribution on

[– eL, e~]. Similarly, we assume a D~(e~) for A~H. The

uniform and Gaussian (normal) distributions are il-

lustrated in Fig. 5.

At the low level, consider

+
L,k _ L, O+~L, k

-4 > k=l,2,... , KL (22)

where s” k are samples from D‘. At the higher level, we

have, for each k,

+ H’k’i=&’o+sH’k’i, isl,z,.... , KH (23)

t

uniform

*
o

(a)

h Gaussian

(b)

Fig. 5. Typical tolerance distributions: uniform and Gaussian (normal).

where

@“0= +H’O(@L’O)

~H’k’i=@H’O(+L’k)–@H’O(@L’O)+~“”i (24)

with 6” i being samples from D‘.

One might propose a distribution for s‘’ i which pre-

sumably encompasses the effect of distribution D L and

distribution D‘. But, while we may reasonably assume

simple and independent distributions for A~L and A@H,

the compound distribution is likely to be complicated and

correlated.

B. Centering, Tolerancing, and Tuning

Again, in order to simplify the notation, we use +0 for

the nominal circuit and e for the tolerance variables.

An important problem involves design centering with

fixed tolerances, usually relative to corresponding nominal

values. We call this the fixed tolerance problem (FTP). The

optimization variables are elements of +0, the elements of

e are constant or dependent on the variables, and the

objective is to improve the yield. Incidentally, the nominal

optimization problem, i.e., the traditional design problem,

is sometimes referred to as the zero tolerance problem

(ZTP).

Since imposing tight tolerances on the parameters will

increase the cost of component fabrication or process

operation, we may attempt to maximize the allowable

tolerances subject to an acceptable yield. In this case both

4° and E may be considered as variables. Such a problem

is referred to as optimal tolerancing, optimal tolerance

assignment, or the variable tolerance problem (VTP).

Tuning some components of ~~ after production,
‘whether by the manufacturer or by a customer, is quite

commonly used as a means of improving the yield. This

process can also be simulated using the model by introduc-

ing a vector of designable tuning adjustments ~ k for each

circuit, as

r$’=r#)+sk+Tk, k=l,2,.., K. (25)

We have to determine, through optimization, the value of
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(a)

parameter space

nontunable points
/

L tunable

(b)

Fig. 6. Illustrations of tuning: (a) both parameters are tunable for a

case in which the probability that an untuned design meets the specifi-

cations is very low and (b) only one parameter is tunable.

T k such that the specifications will be satisfied at +k which

may otherwise be unacceptable, as depicted in Figs. 6 and

7. The introduction of tuning, on the other hand, also

increases design complexity and manufacturing cost. We

seek a suitable compromise by solting an optimization

problem in which ~ k are treated as part of the variables.
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I

)2 t“n~b}~ \\

acceptable

$$2$

region >

$\\

8
●

~\ -

\\-” ‘ 4“ tolerance
~~ d.

(a)
J,

+ fp,
(b)

.,

(c)

Fig. 7. An illustration of multicircuit design considering eight circuit

outcomes. +1 is tolerartced and +2 is tunable. (a) Without tuning the

yield is 2/8 (25 percent). (b) Tuning on +2 is restricted to a small
range. The improved yield is 4/8 (50 percent). (c) A 75 percent yield is

achieved by allowing a large tuning range.

From nominal design, centering, optimal tole&ncing, to

optimal tuning, we have defined a range. of problems

which lead to increasingly improved yield but, on the other

hand, correspond to increasing complexity: Some specific

formulations are discussed in” Section V. Analogously to

ZTP, FTP, and VTP, we can define zero tuning, fixed

tuning, and variable tun!rtg problem: [20].
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C. Multicircuit Modeling

The uncertainties that affect circuit modeling can be

discussed under the following categories.

1)

2)

3)

4)

Measurement errors will inevitably exist in practice,

as represented by AFM in (17): FM= F“’O(+M) +

AF”.

Even without measurement errors, the calculated re-

sponse FH’O may never be able to match F“’O per-

fectly, due to, for example, the use of a model of

insufficient order or inadequate complexity. Such an

inherent mismatch is accounted for in (18) by FH =

FH’O + AFH.

Even if neither AFM nor AFH exists so that FH’O =

FM, we may still not be able to uniquely identify @

from the set of measurements that has been selected.

This happens when the system of (generally nonlin-

ear) equations FH’O(~) – FM = O, where FM is the

data, is underdetermined. Typically, this problem

occurs when, for any reason, many internal nodes are

inaccessible to direct measurement. An overcom-

plicated equivalent circuit, including unknown para-

sitic elements, is frequently at the heart of this phe-

nomenon.

The parasitic effects that are not adequately modeled

by @H contribute to the uncertainty AFL. This is

another source of interference with the modeling

process.

First we consider the case in which modeling is applied

to obtain a suitable @ such that F~(@) approximates FM.

The nominal circuit approach may be able to cope with the

uncertainties in 1) and 2), and comes up with a @ which

minimizes the errors AFM and AFH in a certain sense.

But it will not be able to overcome the problem of unique-

ness. In practice, we are often unable to determine unam-

biguously the identifiability of a system, because all these

uncertainties can be present at the same time. There will

be, typically, a family of solutions which produce reason-

able and similar matches between the measured and the

calculated responses. We cannot, therefore, rely on any

particular set of parameters.

The approach of multicircuit modeling by Bandler et al.

[12] can be used to overcome these difficulties. Multiple

circuits are created by making deliberate adjustments on

the physical parameters ~~. For example, we can change

the biasing conditions for an active device and obtain
multiple sets of measurements. By doing so, we introduce

perturbations to the model which cause some parameters

in @ to change by an unknown amount. For this approach

to be successful, each physical adjustment should produce

changes in only a few parameters in @

Although we do not know the changes in @ quantita-

tively, it is often possible to identify which model parame-

ters may have been affected by the physical adjustments.

Such a qualitative knowledge may be apparent from the

definition of the model or it may come from practical

experience. In the attempt to process multiple circuits

Fig. 8. An illustration of multicircuit modeling. Three circuits are

created by making two physical adjustments. Assume that we know
that I#Jl should not be affected by the physicaf adjustments. Co, Cl,
and C2 are contours of the error functions corresponding to the three
circuits. (a) By treating the three circuits separately, we obtain $0, #,
and OZ. O!, +:, and $; turn out to have different vahres (which N
inconsistent with our knowledge) because of uncertainties. (b) Con-

sistent results can be obtained by defining @l as a common variable
and processing three circuits simultaneously.

simultaneously, we define those model parameters that are

not supposed to change as common variables and, at the

same time, allow the others to vary between different

circuits. By doing so, we force the solution to exhibit the

desired consistency and, therefore, improve the reliability

of the result. In other words, from a family of possible

solutions we select the one that conforms to the topologi-

cal constraints. Bandler et al. have shown an example [12,

Section III-A] in which o can not be uniquely identified

due to inaccessible nodes. The problem was effectively

addressed using the multicircuit approach.

To formulate this mathematically, let

(26)

where Og contains the common variables and O: contains

the variables which are allowed to vary between the kth

circuit and the reference circuit +O. We then define the

optimization variables by

[
~= (+y(+y...

I(+:)TT (27)

and state the optimization problem as to

miniXmize U(x) = ll~l/P (28)

where

f= [eT(+O) eT(+’) . . . eT(r)K)]’. (29)

Although any (P norm maybe used, the unique property

of 11 discussed m detail by Bandler et al. [12] can be

exploited to great advantage. The concept of common and

independent variables is depicted in Fig. 8.

Now, suppose that we do not have a clear idea about

which model parameters may have been affected by the
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adjustment on ~~. In this case, we let

[x= (t$o)T(+1)?..(*K)=]= (30)

and change the objective function to an 1P norm of

f+=(+o) . . “eT(+K) al(t$l– +O)=...aK(@-@)Ty
(31)

where al, az, ” . ., a~ are nonnegative multipliers (weights).

Using this formulation, while minimizing the errors e,

we penalize the objective function for any deviates be-

tween 4/ and @o, since our only available knowledge is

that only a few parameters in @ should have any signifi-

cant changes. To be effective, an /l norm should be used.

A similar principle has been successfully applied to the

analog circuit fault location problem [9], [27].

A practical application to FET modeling has been de-

scribed by Bandler et al. in [16], where multiple circuits

were created by taking three sets of actual measurements

under different biasing conditions.

Another important application of multicircuit modeling

is to create analytical formulas which link the model @ to

the actual physical parameters ~~. Such formulas will

become extremely useful in guiding an actual production

alignment or tuning procedure. A sequence of adjustments

on +~ can be systematically made and multiple sets of

measurements are taken. By nominal circuit optimization,

these measurements would be processed separately to ob-

tain a set of static models. In the presence of uncertainties,

a singlechange in @ may seem to cause fluctuations in all

the model parameters. Obviously, such resul~s are of very

little use. In contrast, multicircuit modeling N more likely

to produce models that are consistent and reliable. Since

the measurements are made systematically, it certainly

makes sense to process them simultaneously. Actually, the

variables need not be equivalent circuit model parameters.

They can include coefficients of a proposed formula as

well.

An example of establishing an experimental relationship

between the physical and model parameters for a multicav-

ity filter using multiple sets of actual measurements has

been described by Daijavad [44].

The multicircuit approach can also be applied to model

verification. This is typically related to cases where the
~ has put the validity of a modelparasitic uncertainty AF

in doubt. Instead of defining common and independent

variables explicitly, we use the formulation of (30) and

(31). If consistent results are obtained, then our confidence

in the model is strengthened. Otherwise we should prob-

ably reject the current model and consider representing the
parasitic more adequately. A convincing example has

been demonstrated by Bandler et al. [12, section V, test 2].
The commercial packages TOUCHSTONE [104], [105]

and SUPER-COMPACT [99] allow a hierarchy of circuit

blocks and permit the use of variable labels. Multiple

circuits and coqunon variables can be easily defined utiliz-

insz these features.

A

7)
o
t.)

-J
—-------
0

yield

Fig. 9. A typical cost-versus-yield curve [97].

V. TECHNIQUES FOR STATISTICAL DESIGN

In Section IV we have generally discussed uncertainties

at different levels, and, in particular, we have expressed

our desire to maximize yield in the presence of uncertain-

ties. Optimal tolerancing and tuning have also been identl-
,.

fied as means to further reduce cost in the actual produc-

tion.

We begin this section with a review of some e@ing

techniques for statistical design. Some of the earliest work

in this area came from Karafin [68], Pinel and Roberts

[87], Butler [36], Elias [52], Bandler, Liu, and Tromp [24].

During the years, significant contributions have been made

by, among others, Director and Hachtel [47] (the simplicial

method), Soin and Spence [98] (ths gravity method), Band-

ler and Abdel-Malek [1], [2], [7] (multidimensional ap-

proximation), Biernacki and Styblinski [30] (dynapic con-

straint approximation), Polak and Sangiovanni-Vincentelli

[90] (a method using outer approximation), as well as

Singhal and Pinel [97] (the parametric sampling method).

Following the review, we propose a generalized 1P center-

ing algorithm.

A commonly assumed cost versus yield curve [97] is

shown in Fig. 9. Actually, hard data are difficult to obtain,

and, as we shall see, rather abstract objective functions are

often selected for the tolerance-yield design probleml Fig.

10 shows a design with a 100 percent yield and a second

design corresponding to the minimum cost.

A. Worst-Case Design

By this approach, we attempt to achieve a 100 percent

yield. Since it means that the specifications have to be

satisfied for all the possible outcomes, we need to consider

only the worst cases

Bandler et al. [23], [24] have formulated it as a nonlinear
programming problem

minimize C(x)
x

subject to e(+~) <0, for all k (32)

where C(x) is a suitable cost function and the points &
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parameter space

maximum yield
(loo%)

\

minimum cost
(c 100% yield)

Fig. 10. A maximum yield design and a minimum cost design

are the worst cases. For instance, we may have

(33)

where 18 and It are index sets identifying the tolerance

and tunable parameters, respectively. ei and ti are the

tolerance and the tuning range, respectively, associated

with the i th parameter. a, and bi are nonnegative weights.

A cost function can also be defined for relative tolerances

and tuning by including @~into (33). A critical part of this

approach is the determination of the worst cases. Vertices

of the tolerance region, for example, are possible candi-

dates for the worst cases by assuming one-dimensional

convexity. The yield function does not enter (32) ex-

plicitly; instead, a 100 percent yield is implied by a feasible

solution.

Bandler and Charalambous [11] have demonstrated a

solution to (32) by minimax optimization. Polak and
Sangiovanni-Vincentelli [90] have proposed a different but

equivalent formulation which involves a nondifferentiable

optimization.
A worst-case design is not always appropriate. While

attempting to obtain a 100 percent yield, the worst-case

approach may necessitate unrealistically tight tolerances,

or demand excessive tuning. In either case, the cost may be

too high. A perfect 100 percent yield may not even be

realizable.

B. Methods of Approximating the Acceptable Region

Since yield is given by the percentage of model out-

comes that fall into the acceptable region, we may wish to

find an approximation to that region. The acceptable

region has-been defined in (16) as R:= { ~\H(e(~)j < O}.

Director and Hachtel [47] have devised a simplicial

approximation approach. It begins by determining points

~k on the boundary of R. which is given by il.=

{ 4@(e(4)) = 0}. The convex hull of these points forms a
polyhedron. The largest hypersphere inscribed within the

polyhedron gives an approximation to R. and is found by

solving a linear programming problem. Using line searches,

more points on the boundary are located and the poly-

hedron is expanded. The process thus provides a monoton-

ically increasing lower bound on the yield. The center and

radius of the hypersphere can be used to determine the

centered nominal point and the tolerances, respectively.

The application of this method is, however, severely limited

by the assumption of a convex acceptable region.

Bandler and Abdel-Malek [1], [2], [7] have presented a

method which approximates each ej( ~ ) by a low-order

multidimensional polynomial. Model simulations are per-

formed at some @k selected around a reference point.

From the values of ej(~k) the coefficients of the ap-

proximating polynomial are determined by solving a linear

system of equations. Appropriate linear cuts are con-

structed to approximate the boundary fl~. The yield is

estimated through evaluation of the hypervolumes that lie

outside R. but inside the tolerance region. In critical

regions these polynomial approximations are updated dur-

ing optimization. The one-dimensional convexity assump-

tion for this method is much less restrictive than the

multidimensional convexity required by the simplicial ap-

proach. Sensitivities for the estimated yield are also avail-

able.

Recently, Biernacki and Styblinski [30] have extended

the work on multidimensional polynomial approxima-

tion by considering a dynamic constraint approximation

scheme. It avoids the large number of base points required

for a full quadratic interpolation by selecting a maximally

flat interpolation. During optimization, whenever a new

base point is added, the approximation is updated. It

shows improved accuracy compared with a linear model as

well as reduced computational effort compared with a full

quadratic model.

C. The Gravity Method

Soin and Spence [98] proposed a statistical exploration

approach. Based on a Monte Carlo analysis, the centers of
gravity of the failed and passed samples are determined as,

respectively,

(34)
lke.1 1/ “

where J is the index set identifying the failed samples:

K~til and KP=~ are the numbers of failed and passed

samples, respectively. The nomimd point @o is then ad-

justed along the direction s = r$~ – of using a line search.
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that for a given x the sign of U(x) does not depend on p,

q, or a~. However, the optimal solution x at which U(x)

attains its minimum is dependent on p, q, and a. This

means that using any values of p, q, and a we will be able

to achieve a U(x)< O (i.e., to achieve a 100 percent yield).

Furthermore, by using different p, q, and a, we influence

the centering of +O. Interestingly, the worst-case centering

(39) becomes a special case by letting both p, q = m and

using unit multipliers.

Now consider the case where the optimal yield is less

than 100 percent. In this case we propose the use of p =1

and q = 1 in (41). Also, given a starting point Xo, we define

the set of multipliers by

ak=l/luk(xo)l, k=l,2,..., K. (43)

Our proposition is based on the following reasoning (a

more complete theoretical justification is reserved for a

future paper).

Consider the 1P sum given by

z [%(x)]’ (44)
kEJ

where J = { k Iu~ > O}. As p a O (44) approaches the total

number of unacceptable circuits which we wish to mini-

mize. The smallest p that gives a convex approximation is

1. This leads to the generalized 11 objective function given

by

u(x) = ~ Z4k(x) = ~ akok(x). (45)
kGJ k=J

With the multipliers defined by (43), the value of the

objective function at the starting point, namely U(XO ), is

precisely the count of unacceptable circuits. Also, notice

that the magnitude of ok measures the closeness of @k to

the acceptable region. A small IUkl indicates that & is

close to satisfying or violating the specifications. There-

fore, we assign a large multiplier to it so that more

emphasis will be given to ~k during optimization. On the

other hand, we de-emphasize those points that are far

away from the boundary of the acceptable region because

their contributions to the yield are less likely to change.

One important feature of this approach is its capability

of accommodating arbitrary tolerance distributions, since

they only influence the generation of @k. The numerical

results we have obtained are very promising. The gener-

alized 1P centering algorithm can also be extended to
include variable tolerances and tuning.

VI. EXAMPLES OF STATISTICAL DESIGN

Example 1

The classical two-section 10:1 transmission line trans-

former, originally proposed by Bandler et al. [23] to test

minimax optimizers, is a good example for illustrating

graphically the basic ideas of centering and tolerancing.

An upper specification on the reflection coefficient as

Ipl <0.55 and 11 frequencies {0.5,0.6,..., 1.5 GHz} are
considered. The lengths of the transmission lines are fixed

at the quarter-wavelength while the characteristic imped-

ances ZI and Zz are to be tolerance and optimized. Fig.

6

5

z~

4

3
1 2 3

Fig. 11. Contours of max l?, I with respect to ZI and Z2 for the

two-section transformer indlcatmg the minimax nominaf solution a,

the centered design with relative tolerances b, and the centered design
with absolute tolerances c, The values in brackets are the optimized

tolerances (as percentages of the nominaf values). The specification is

[pl <0.55.

11 shows the minimax contours, the minimax nominal

solution, and the worst-case solutions [23] for

PO: minimize Cl= Z~/el + Z~/ez

subject to Y = 100 percent

P1: minimize Cz = l/cl + l/&z subject to Y= 100 percent

where el, tz denote tolerances on Z1 and Zz (assuming

independent uniform distributions), and Y is the yield.

The cost functions Cl and C. correspond to, respectively,

relative and absolute tolerancing problems. Two problems

of less than 100 percent yield have also been considered by

Bandler and Abdel-Malek [7] as

P2: minimize Cz subject to Y> 90 percent

P3: minimize Cz/Y.

The optimal tolerance regions and nominal values for

P2 and P3 are shown in Fig. 12. For more details see the

original paper [7].

Example 2

The statistical design of a Chebyshev low-pass filter

(Singhal and Pinel [97]) is used as the second example.
Fifty-one frequencies {0.02, 0.04,. ..,1.0,1.3 Hz} are con-

sidered. An upper specification of 0.32 dB on the insertion

loss is defined for frequencies from 0.02 to 1.0 Hz. A lower

specification of 52 dB on the insertion loss is defined at

1.3 Hz.
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Fig. 12. The optimized tolerance regions and nominal values for the
worst case design PI, 90 percent yield design P2, and minimum cost

design P3 of the two-section transformer.

Singhal and Pinel [97] have applied the parametric sam-

pling method to the same circuit, assuming normal distri-

butions for the tolerance elements. But, as we have pointed

out earlier in this paper, the parametric sampling method

cannot be applied to nondifferentiable (such as uniform)

distributions. Here, we consider a uniformly distributed

1.5 percent relative tolerance for each component. The

generalized 1P centering algorithm described in Section V

is used with p =1. The nominal solution by standard

synthesis as given in [97] was used as starting point, which

has a 49 percent yield (w.r.t. the tolerances specified). An

84 percent yield is achieved at the solution which involves

a sequence of three design cycles with a total CPU time of

66 seconds on the VAX 8600. Some details are provided in

Table I.

VII. GRADIENT-BASED OPTIMIZATION METHODS

So far we have concentrated on translating our practical

concerns into mathematical expressions. Now we turn our

attention to the solution methods for optimization prob-

lems.

The studies in the last two decades on the theoretical

and algorithmic aspects of optimization techniques have

produced a great ntimber of results. Modern state-of-the-art

methods have largely replaced the primitive trial-and-
error-approach. In particular, gradient-based optimization

methods have gained increasing popularity in recent years

for their effectiveness and efficiency.

The majority of gradient-based methods belong to the

Gauss–Newton, quasi-Newton, and conjugate gradient

families. All these are iterative algorithms which, from a

TABLE I

STATISTICAL DESIGN OF A LOW-PASS FILTER USING

GENERALIZED [1 CENTERING TSCHNIQUE

Component Nominal Design case1 Case 2 case3
h &o,o &O,l ,&O,z ~o,3

xl 0,2251 021954 0,21705 021530

X2 02494 025157 0,24677 0.2383S

% 0.2523 0,25529 0 347s4 024120

X4 0.2494 034807 024019 0 236S7

X6 0.2251 022042 021753 021335

% 02149 022627 023566 023093

=7 O3636 036739 0.37212 038225

x6 0,3761 0,36929 036012 039023

X9 0,3761 0.37341 0 3s371 O39376

.10 0.3636 0.36732 0.37716 0,3824S

xl 1 (1.2149 0.22573 022127 023129

Yield 49% 77,67% 79,67% S3,67%

Number of samples 50 100 100
used for design

Starting point +0,0 ,$0,1 +0,2

Numb+r of iterations 16 18 13

CPU time (VAX 86oo) 10 sec. 30 se. 26 sw

Indep=mdent tmif.rm distributions are assumed for each component with fixed tolerances

e, = 1.5% +io. The yield is estimated based on 300 wnpka

given starting point XO, generate a“ sequence of points

{ x~ }. The success of an algorithm depends on whether

{ x~ } will converge to a point x* and, if so, whether x“

will be a stationary point. An iterative algoiithm is de-

scribed largely by one of its iterations as how to obtain

x~+ ~ from Xk.

We use the notation U(x) for the objective function and

v U for the gradient vector of U. JNhen U(x) is defined by

an 1P function, we use ~ to denote the set of individual

error functions so that U= II(f). We also use j‘ for the

first-order derivatives of L and G for the JacobIan matrix

of f.

A. 1P Optimization and Mathematical Programming

Of the 1P family, 11, lZ, and 1~ are the most distinctive

and by far the most useful members. Apart from their

unique theoretical properties, it is very important from the

algorithmic point of view that linear 11, 12, and lQ prob-

lems can be solved exactly using linear or quadratic pro-

gramming techniques. Besides, all the other members of

the 1P family have a continuous~y differentiable function

and, therefore, can be treated similarly to the lZ case.

An 11, 12, or 1~ optimization problem can be converted

into a mathematical program. The concepts of local lin-

earization and optimality conditicms are often clarified by

the equivalent formulation.

For instance, the minimization of II f II~ is equivalent to

m

minimize ~, yj
X9Y j=l

(46)
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TABLE II

MATHEMATICAL PROGRAMMING EQUIVALENT FORMULATIONS FOR

11,123 ANDlm OPTIMIZATION

The cmginal problem minimize H(f)
x

The equivalent problem minimize V(x,y) sub,ect to the constraints as defined below
ZY

H(fl V(S, y) constraints (forj= 1,2, ,m)

f Y, ~,> f,, y,> -f,
,=,

H; (0 YTY Y,zf,, yjzo

H#l Y Y>f,

Note A generahzed tP function HP(O is defined through HP+(O and HP-(O HP-is a

c.mtin..usly diiferentlable funct,onforallp <M.

subject to

Y’zf(~), Y,=~(~), j=l,2,. ... m.

Other equivalent formulations are summarized in Table

II. For the convenience of presentation, we denote these

mathematical programming problems by P( x, j). One

important feature of P(x, ~) is that it has a linear or

quadratic objective function. If ~ is a set of linear func-

tions, then P( x, ~) becomes a linear or quadratic program

which can be solved using standard techniques. Equally

importantly, linear constraints can be easily incorporated

into the problem. Let P( x, ~, D) be the problem of

P(.x, j) subject to a set of linear constraints of the form

a~x+-bi=O, 1=1,2,..., L,~
D; (47)

a~x+b, >O, l= L~~+l,..., L

where a ~ and b, are constants. If P( x, ~ ) is a linear or

quadratic program, so is P(x, ~, D). In other words, un-

constrained and linearly constrained linear 11, lJ, and 1~

problems can be solved using standard linear or quadratic
programming techniques.

B. Gauss – Newton Methods Using Trust Regions

For a general problem, we mayz at each iteration, sub-

stitute $ with a linearized model ~ so that P( x, ~) can be

solved.

For a Gauss–Newton type method, at a given point x~,

a linearization of ~ is made as

j(h) = f(Xk)+G(Xk)/I (48)

where G is the Jacobian matrix. We then solve the linear

or quadratic program P(h, j, D), where

A~>hl, j=l,2,. ... n
D:

Ak>–hl,
(49)

j=l,2,. ... rz.

These additional constraints define a trust region in which

the linearized model ~ is believed to be a good approxi-

mation to ~.

Another way to look at it is that we have applied a

semilinearization (Madsen [78]) to U(x) = H(~) resulting

in

u(h) = H(j(h)). (50)

It is important to point out that (50) is quite different from

a normal linearization as U(h) = U(x~) + [v U(x~)] %

which corresponds to a steepest descent method. In fact

VU may not even exist.
Denote the solution of P(h, ~, D) by h~. If x~ + h ~

reduces the original objective function, we take it as the

next iterate; i.e., if fl(x~ + h~) < u(x~) then x~+l =

Xk + hk. Otherwise we let x~+ ~= x~. In the latter case, the

trust region is apparently too large and, consequently,

should be reduced. At each iteration, the local bound A ~

in (49) is adjusted according to the goodness of the lin-

earized model.

The above describes the essence of a class of algorithms

due to Madsen, who has called it method 1. Madsen [78]

has shown that the algorithm provides global convergence

in which the proper use of trust regions constitutes a

critical part. Such a method has been implemented as an

important element in the minimax and 11 algorithms of

Hald and Madsen [65], [66]. In some other earlier work by

Osborne and Watson [85], [86] the problem I’(h, f) was

solved without incorporating a trust region and the solu-

tion h ~ was used as the direction for a line search. For

their methods no convergence can be guaranteed and { x~ }

may even converge to a nonstationary point.

Normally for the least-squares objective we have to solve

a quadratic program at each iteration, which can be a

time-consuming process. A remarkable alternative is the

Levenberg–Marquardt [76], [81] method. Given x~, it

solves

rnin~rnize h~(G~G + d~l)h +2~~Gh + ~~’ (51)

where G = G(x~), ~ = ~(x~), and 1 is an identity matrix.

The minimizer h ~ is obtained simply by solving the linear

system

(G’G + tlkl)hk= - G~ (52)

using, for example, LU factorization. The Levenberg–

Marquardt parameter Ok is very critical for this method.

First of all, it is made to guarantee the positive definiteness

of (52). Furthermore, it plays, roughly speaking, an in-

versed role of A ~ to control the size of a trust region.

When Ok ~ w, h~ gives an infinitesimal steepest descent

step. When L9~= O, h~ becomes the solution to P(h, f)

without bounds, which is equivalent to having A ~ h co.

The concept of trust region has been discussed in a

broader context by Mor6 in a recent survey [82].
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C. Quasi-Newton Methods

Quasi-Newton methods (also known as variable metric

methods) are originated in and steadily upgraded from the

work of Davidon [45] and Broyden [33], [34], as well as

Fletcher and Powell [55].

For a differentiable U(x), a quasi-Newton step is given

by

hk=–(’YkB;lvu(x/J (53)

where 11~ is an approximation to the Hessian of U(x) and

the step size controlling parameter a~ is to be determined

through a line search. However, on some occasions such as

in the 11 or minimax case, the gradient v U may not exist,

much less the Hessian.

We can gain more insight to the general cape by examin-

ing the optimality conditions. Applying the Kuhn-Tucker

conditions for nonlinear programming [70] to the equiv-

alent problem P(x, ~), we shall find a set of optimality

equations

R(x)=O. (54)

Since a local optimum x * must satisfy these equations,

we are naturally motivated to solve (54), as a means of

finding the minimizer of U(x). A quasi-Newton step for

solving nonlinear equations (54) is given by

hk=–akJ;lR(xk) (55)

where Jk is an approximate Jacobian of R(x). only when

U(x) is differentiable will we have the optimality equa-

tions as R(x)= v U(x) = O and (55) reverts to (53).
Hald and Madsen [65], [66] and Bandler et al. [21], [22]

have described the implementation of a quasi-Newton

method for the minimax and 11 optimization in which the

objective functions are not differentiable. Clarke [43] has

introduced the concept of generalized gradient, with which

optimality conditions can be derived for a broad range of

problems.

Quasi-Newton methods, whether in (53) or (55), all

require updates of certain approximate Hessians. Many

formulas have been proposed over the years. The best

known are the Powell symmetric Broyden (PSB) update

[91], the Davidon-Fletcher-Powell (DFP) update [45],

[55], and the Broyden-Fletcher-Goldfwb-Shanno (BFGS)

update [35], [53], [60], [95]. The merits of these formulas

and a great many other variations are often compared in

terms of their preservation of positive definiteness, conver-

gence to the true Hessian, and numerical performance (see,

for instance, Fletcher [54] and Gill and Murray [59]).

Another important point to be considered is the line

search. Ideally, a~ is chosen as the minimizer of U in the

direction of line search so that h~ v U(x. + hk) = O. If
exact line searches are executed, Dixon [50] has shown that
theoretically all members of the Broyden family [34], [53]

would have the same performance. In practice, however,

exact line search is deemed too expensive and is therefore

replaced by other methods. An inexact line search usually

limits the evaluation of U and v U to only a few points.

Interpolation and extrapolation techniques (such as a

quadratic or cubic fit) are then incorporated.

D. Combined Methods

The distinguishing advantage of a quasi-Newton method

is that it enjoys a fast rate of convergence near a solution.

However, like the Newton method for nonlinear equations,

the quasi-Newton method is not always reliable from a

bad starting point.

Hald and Madsen [65], [66], [78,] have suggested a class

of two-stage algorithms. A first-order method of the

Gauss–Newton tfie is employecl in stage 1 to provide

global convergence to a neighborhood of a solution. When

the solution is singular, method 1 suffers from a very slow

rate of convergence and a switch is made to a quasi-New-

ton method (stage 2). Several switches between the two

methods may take place and the switching criteria ensure

the global convergence of the combined algorithm.

Numerical examples of circuit applications have demon-

strated a very strong performance of the approach [21],

[22], [79], [80].

Powell [92] has extended the Levenberg–Marquardt

method and suggested a trust-region strategy which inter-

polates between a steepest descent step and a Newton step.

When far away from the solution, the step is biased toward

the steepest descent direction to make sure that it is

downhill. Once close to the solution, taking a full Newton

step will provide rapid final convergence.

E. Conjugate Gradient Methods

Some extremely large-scale engineering applications jn-

volve hundreds of variables and functions. Although the

rapid advances in computer technology have enabled us to

solve increasingly larger problems, there may be cases in

which even the storage of a Hessian matrix and the solu-

tion of an n by n linear system become unmanageable.

Conjugate gradient methods [56], [75], [88] provide an

alternative for such problems. A distinct advantage of

conjugate gradient methods is the minimal requirement of

storage. Typically three to six vectors of length n are

needed, which is substantially less than the requirement by

the Gauss–Newton or quasi-Newton methods. However,

proper scaling or preconditioning, near-perfect line searches

and appropriate restart criteria are usually necessary to

ensure convergence. In general, we have to pay the price

for the reduced storage by enduring a longer computation

time.

VIII. GRADIENT CALCULATION AND APPROXIMATION

The application of gradient-based 1Poptimization metho-

ds requires the first-order derivatives of the error func-
tions with respect to the variables.

In circuit optimization, these derivatives are usually

obtained from a sensitivity analysis of the network under

consideration. For linearized circuits in the frequency do-

main, it is often possible to calculate the exact sensitivities

by the adjoint network approach [5], [31], [48].
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However, we ought to recognize that an explicit and

elegant sensitivity expression is not always available. For

time-domain responses and nonlinear circuits, an exact

formula may not exist. Even for linear circuits in the

frequency domain, large-scale networks present new prob-

lems which need to be addressed.

Often, a large-scale network can be described through

compounded and interconnected subnetworks. Many com-

mercial CAD packages such as SUPER-COMPACT [99]

and TOUCHSTONE [104], [105] have facilitated such a

block structure. In this case, one possible approach would

be to assemble the overall nodal matrix and solve the

system of equations using sparse techniques (see, e.g., Duff

[51], Gustavson [61], Hachtel et al. [62]). Another possibil-

ity is to rearrange the overall nodal matrix into a bor-

dered block structure which is then solved using the Sher-

man–Morrison-Woodbury formula [63], [96]. Sometimes

it is also possible to develop efficient formulas for a special

structure, such as the approach of Bandler et al. [17] for

branched cascaded networks.

In practice, perhaps the most perplexing and time-con-

suming part of the task is to devise an index scheme

through which pieces of lower level information can be

brought into the overall sensitivity expression. It may also

require a large amount of memory storage for the various

intermediate results. Partly due to these difficulties, meth-

ods of exact sensitivity calculations have yet to find their

way into general-purpose CAD software packages, al-

though the concept of adjoint network has been in ex-

istence for nearly two decades and has had success in

many specialized applications.

In cases where either exact sensitivities do not exist or

are too difficult to calculate, we can utilize gradient ap-

pro~mations [15], [16], [77], [109]. A recent approach to
circuit optimization with integrated gradient approxima-

tions has been described by Bandler et al. [16]. It has been

shown to be very effective and efficient in practical appli-

cations including FET modeling and multiplexer optimiza-

tion.

IX. CONCLUSIONS

In this review, we have formulated realistic circuit de-

sign and modeling problems and described their solution

methods. Models, variables, and functions at different

levels, as well as the associated tolerances and uncertain-

ties, have been identified. The concepts of design center-

ing, tolerancing, and tuning have been discussed. Recent

advances in statistical design, yield enhancement, and

robust modeling techniques suitable for microwave CAD

have been discussed in detail. State-of-the-art optimization

techniques have been addressed from both the theoretical

and algorithmic points of view.

We have concentrated on aspects that are felt to be

immediately relevant to and necessary for modern micro-

wave CAD. There are, of course, other related subjects

that have not been treated or not adequately treated in this

paper. Notable among these are special techniques for very

large systems (Geoffrion [57], [58], Haimes [64], Lasdon

[72]), third-generation simulation techniques (Hachtel and

Sangiovanni-Vincentelli [63]), fault diagnosis (Bandler and

Salama [27]), supercomputer-aided CAD (Rizzoli et al.

[93]), the simulated annealing and combinatorial optimiza-

tion methods and their application to integrated circuit

layout problems [38], [69], [84], and the new automated

decomposition approach to large scale optimization

(Bandler and Zhang [28]).

The paper is particularly timely in that software based

on techniques which we have described is being integrated

by Optimization Systems Associates Inc. into SUPER-

COMPACT by arrangement with Compact Software Inc.
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